Skip to main content
Log in

Effects of mooring management on submerged vegetation, sediments and macro-invertebrates in Lake Constance, Germany

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Mooring areas are a common form of berthing in many of Germany’s inland waters for the growing number of sporting boats. A circular swinging zone around the anchor zone is formed, in which the submerged macrophyte vegetation is destroyed to a large extent, and the sediment surface is eroded. We investigated the effects of two types of buoy (conventional and so-called hook-buoys) in comparison with undisturbed reference sites nearby. The aim of the study was to identify possible harmful consequences of mooring sites to lake littoral habitats in Lake Constance-Untersee, and to provide information to managers to aid them in the formulation of mooring management plans with the least ecological impact. The study focused on submerged vegetation, surface sediments and macro-invertebrate colonisation. In the swinging circle of conventional buoys (87 m2) we observed a significant sediment matter erosion of 0.9 tonnes and a reduction of organic matter amount by 4.5% of the undisturbed reference. The vegetation free area increased by 122%, and the phytomass (mainly Chara div. spp.) was reduced by 14.6% per berth. The psammophilous macro-invertebrate numbers were not significantly affected (−3%) in contrast to the phytophilous taxa which were reduced by 12.7% per berth. The mayfly larvae were the most negatively affected taxon. Oligochaetes profited from the clearing of the sediment surface in the swinging circles. The ecological effects of the hook-buoys were more minor, mainly due to the smaller swinging circle (6 m2). We concluded that the detrimental effects of mooring can be significantly reduced by mooring systems, e. g. the hook-buoy system as it was used in this study, which reduce the area disturbed and cleared by the anchor chain. We argue that these results can be generalised to mooring areas with soft bottom and dense macrophyte vegetation in Lake Constance and other large lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Armitage PD, Pardo I, Brown A (1995) Temporal constancy of faunal assemblages in “mesohabitats” application to management? Arch Hydrobiol 133:367–387

    Google Scholar 

  • Bäuerle E, Ollinger D, Ilmberger J (1998) Some meteorological, hydrological, and hydrodynamical aspects of Upper Lake Constance. Arch Hydrobiol Spec Issues Advanc Limnol 53:31–83

    Google Scholar 

  • Buttler KP, Harms K (1998) Florenliste von Baden-Wüerttemberg. Liste der Farn- und Samenpflanzen (Pteridophyta et Spermatophyta). Naturschutz-Praxis, Artenschutz, vol 1. Stuttgart, 486 pp

  • Creed JC, Amado Filho GM (1999) Disturbance and recovery of the macroflora of a seagrass (Halodule wrightii Ascherson) meadow in the Abrolhos Marine National Park, Brazil: an experimental evaluation of anchor damage. J Exp Mar Biol Ecol 235:285–306. doi:10.1016/S0022-0981(98)00188-9

    Article  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegill and their prey. Ecology 63:1802–1813. doi:10.2307/1940122

    Article  Google Scholar 

  • Danell K, Sjöberg K (1980) Foods of wigeon, teal, mallard and pintail during summer in a northern Swedish lake. Swed Wildl Res Viltrevy 11:141–167

    Google Scholar 

  • Diehl S (1992) Fish predation and benthic community structure:the role of omnivory and habitat complexity. Ecology 73:1646–1661. doi:10.2307/1940017

    Article  Google Scholar 

  • Francour P, Ganteaume A, Poulain M (1999) Effects of boat anchoring in Posidonia oceanica seagrass beds in the Port-Cros National Park (north-western Mediterranean Sea). Aquat Conserv 9:391–400. doi:10.1002/(SICI)1099-0755(199907/08)9:4<391::AID-AQC356>3.0.CO;2-8

    Article  Google Scholar 

  • Gerking SD (1957) A method of sampling the littoral macrofauna and its application. Ecology 38:219–226. doi:10.2307/1931680

    Article  Google Scholar 

  • Gilinsky E (1984) The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65:455–468. doi:10.2307/1941408

    Article  Google Scholar 

  • Giller PS, Malmqvist B (1999) The biology of streams and rivers. Oxford University Press, Avon, 296 pp

  • Hanson JM, Legett WC (1982) Empirical prediction of fish biomass and yield. Can J Fish Aquat Sci 39:257–263. doi:10.1139/f82-036

    Article  Google Scholar 

  • Hastings K, Hesp P, Kendrick G (1995) Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast Manage 26:225–246. doi:10.1016/0964-5691(95)00012-Q

    Article  Google Scholar 

  • Heino J (2000) Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitats size and water chemistry. Hydrobiologia 418:229–242. doi:10.1023/A:1003969217686

    Article  Google Scholar 

  • Hoffmann RL, Liss WJ, Larson GL, Deimling EK, Lomnicky GA (1996) Distribution of nearshore macroinvertebrates in lakes of the Northern Cascade Mountains, Washington, USA. Arch Hydrobiol 136:363–389

    Google Scholar 

  • IGKB (Internationale Gewässerschutzkommission für den Bodensee) (2005) Auswertung der Statistik der Schifffahrtsanlagen für 2003. http://www.igkb.de

  • Keast A (1984) The introduced aquatic macrophyte, Myriophyllum spicatum, as habitat for fish and their invertebrate prey. Can J Zool 62:1289–1303

    Article  Google Scholar 

  • Keast A (1985) Planktivory in a littoral-dwelling fish association, prey selection and seasonality. Can J Fish Aquat Sci 42:1114–1126

    Article  Google Scholar 

  • Krause W (1997) Charales (Charophyceae). In: Süesswasserflora von Mitteleuropa, vol 18. Fischer, Jena, 202 pp

  • Krull JN (1970) Aquatic plant-macroinvertebrate associations and waterfowl. J Wildl Manage 34:707–718. doi:10.2307/3799135

    Article  Google Scholar 

  • Laughlin DR, Werner EE (1980) Resource partitioning in two coexisting sunfish: pumpkinseed (Lepomis gibbosus) and northern longear sunfish (Lepomis magalotis peltastes). Can J Fish Aquat Sci 37:1411–1420

    Article  Google Scholar 

  • Lenihan HS, Oliver JS, Stephenson MA (1990) Changes in hard bottom communities related to boat mooring and tributyltin in San Diego Bay California USA: a natural experiment. Mar Ecol Prog Ser 60:147–160. doi:10.3354/meps060147

    Article  Google Scholar 

  • Marba N, Duarte C, Holmer M, Martinez R, Basterretxea G, Orfila A, Jordi A, Tintore J (2002) Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv 29:509–518. doi:10.1017/S037689290200036X

    Google Scholar 

  • Milazzo M, Badalamenti F, Ceccherelli G, Chemello R (2004) Boat anchoring on Posidonia oceanica beds in a marine protected area (Italy, western Mediterranean): effect of anchor types in different anchoring stages. J Exp Mar Biol Ecol 299:51–62. doi:10.1016/j.jembe.2003.09.003

    Article  Google Scholar 

  • Minshall GW (1984) Aquatic insect-substratum relationships. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, NY, pp 358–400

    Google Scholar 

  • Mittelbach GG (1984) Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65:499–513. doi:10.2307/1941412

    Article  Google Scholar 

  • Murkin HR, Kadlec JA (1986) Relationships between water fowl and macroinvertebrate densities in a northern prairie marsh. J Wildl Manage 50:212–217. doi:10.2307/3801899

    Article  Google Scholar 

  • Pieczynski E (1973) Experimentally increased fish stock in the pond type Lake Warniak XII Numbers and biomass of the fauna associated with macrophytes. Ekol Pol A 11:533–545

    Google Scholar 

  • Rabe FW, Gibson F (1984) The effect of macrophyte removal on the distribution of selected invertebrates in a littoral environment. J Freshwat Ecol 2:359–371

    Google Scholar 

  • Rasmussen JB (1982) The influence of thermal effluent, before and after macrophyte harvesting, on standing crop and species composition of benthic macroinvertebrate communities in Lake Wabamun, Alberta. Can J Zool 60:3196–3205. doi:10.1139/z82-405

    Article  Google Scholar 

  • Rasmussen JB (1988) Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Can J Fish Aquat Sci 45:1436–1447

    Article  CAS  Google Scholar 

  • Schmieder K, Werner S, Bauer H-G (2006) Submersed macrophytes as a food source für wintering waterbirds at Lake Constance. Aquat Bot 84:245–250. doi:10.1016/j.aquabot.2005.09.006

    Article  Google Scholar 

  • Søndergaard M, Bruun L, Lauridsen T, Jeppesen E, Madsen TV (1996) The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquat Bot 53:73–84. doi:10.1016/0304-3770(95)01013-0

    Article  Google Scholar 

  • Soszka GJ (1975) The invertebrates on submerged macrophytes in three Masurian lakes. Ekol Polska 23:371–391

    Google Scholar 

  • Szijj J (1965) Ökologische Untersuchungen an Entenvögeln (Anatidae) des Ermatinger Beckens (Bodensee). Vogelwarte 23:24–70

    Google Scholar 

  • Tolonen KT, Hämaläinen H, Holopainen IJ, Karjalainen J (2001) Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Arch Hydrobiol 152:39–67

    Google Scholar 

  • van Donk E, De Deckere E, Klein-Breteler JGP, Meulemanns JT (1994) Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: effects on long-term recovery. Verh Int Ver Limnol 25:2139–2143

    Google Scholar 

  • Vincent B, Lafontaine N, Caron P (1982) Facteurs influençant la structure de groupement de macro-invertébrés benthiques et phytophiles dans la zone littorale du Saint-Laurent (Québec). Hydrobiologia 97:67–73. doi:10.1007/BF00014959

    Article  Google Scholar 

  • Wade PM (1999) The impact of human activity on the aquatic macroflora of Llangorse Lake, South Wales. Aquat Conserv 9:441–459. doi:10.1002/(SICI)1099-0755(199909/10)9:5<441::AID-AQC359>3.0.CO;2-J

    Article  Google Scholar 

  • Walker DI, Lukatelich RJ, Bastyan G, McComb AJ (1989) Effect of boat moorings on seagrass beds near Perth Western Australia. Aquat Bot 36:69–78. doi:10.1016/0304-3770(89)90092-2

    Article  Google Scholar 

  • Ward JV (1992) Aquatic insect ecology: 1 Biology and habitat. Wiley, New York, 438 pp

Download references

Acknowledgements

We wish to thank Christof Stier for his assistance during field sampling, Marc Hamitou for enumeration and determination of difficult taxa, two anonymous reviewers for helpful comments, and Rachel Kemp for linguistic corrections. We are also indebted to Martin Wessels at the Institute for Lake Research, Langenargen for making the grain size analyses. The study was partly funded by the Plenum Westlicher Bodensee programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ostendorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostendorp, W., Gretler, T., Mainberger, M. et al. Effects of mooring management on submerged vegetation, sediments and macro-invertebrates in Lake Constance, Germany. Wetlands Ecol Manage 17, 525–541 (2009). https://doi.org/10.1007/s11273-008-9128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-008-9128-0

Keywords

Navigation