Skip to main content
Log in

Difference characteristics of phosphorus in Chara and two submerged angiosperm species: implications for phosphorus nutrient cycling in an aquatic ecosystem

  • Brief communication
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Phosphorus speciation in three submerged macrophytes species, Chara fibrosa Agardh ex Bruzelius, Najas marina Linnaeus and Vallisneria gigantea Graebner, and the implications for phosphorus nutrient cycling in an aquatic ecosystem were studied, using sequential phosphorus fractionations. The results showed that C.␣fibrosa had a far higher residual ash and calcium content compared with the two angiosperm species, but lower total phosphorus content. Two different fractionation methods for phosphorus showed that the bioavailable water-soluble phosphorus (H2O-P) and ammonium chloride extractable phosphorus (NH4Cl-P) of the extractions used represented the major part of total plant phosphorus in the two angiosperm species, while organic phosphorus (NaOH-P) represented a relatively large fraction in C. fibrosa. In this species, about 12–15% of total plant phosphorus was calcium-bound phosphorus (HCl-P), occurring as co-precipitation with calcite encrustation, but this fraction was negligible in the two angiosperm species, i.e. less than 1%. The redox-insensitive forms of HCl-P are considered less bioavailable and not affected by anoxic conditions of bottom sediment, thus have potential as a phosphorus nutrient sink in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ammerman J.W., Azam F., (1985). Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227:1338–1340

    Article  CAS  PubMed  Google Scholar 

  • Anadón P., Utrilla R., Vázquez A., (2000). Use of charophyte carbonates as proxy indicators of subtle hydrological and chemical changes in marl lakes: example from the Miocene Bicorb Basin, eastern Spain. Sediment. Geol. 133:325–347

    Article  Google Scholar 

  • APHA, AWWA, WPCF 1995. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC

  • Brunberg A.K., Blomqvist P., Nilsson E., (2002). Characteristics of oligotrophic hardwater lakes in a postglacial land-rise area in mid Sweden. Freshwater Biol. 47:1451–1462

    Article  CAS  Google Scholar 

  • Carignan R., Kalff J., (1980). Phosphorus sources for aquatic weeds: water or sediments? Science 207:987–989

    Article  CAS  PubMed  Google Scholar 

  • Cembella A.D., Antia N.J., Harrison P.J., (1984). The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. CRC Crit Rev Microbiol 10:317–391

    CAS  Google Scholar 

  • Chrost R.J., Siuda W., (2002). Ecology of microbial enzymes in lake ecosystem. In: Burns R.G., Dick R.P. (eds), Enzymes in the Environment, Activity, Ecology and Application. Marcel Dekker, New York, pp. 35–72

    Google Scholar 

  • Clark L.L., Ingall E.D., Benner R., (1998). Marine phosphorus is selectively remineralized. Nature 393:426

    Article  CAS  Google Scholar 

  • Dou Z., Toth J.D., Galligan D.T., Ramberg C.F., Jr., Ferguson J.D., (2000). Laboratory procedures for characterizing manure phosphorus. J Environ Qual 29:508–514

    Article  CAS  Google Scholar 

  • Feder J., (1973). The phosphatases. In: Griffith E.J., Becten A., Spencer J.M., Mitchel D.T. (eds), Environmental Phosphorus Handbook. Wiley, New York, pp. 475–507

    Google Scholar 

  • Graham L.E., (1993). Origin of Land Plants. John Wiley & Sons, Inc

    Google Scholar 

  • Herbes S.E., Allen H.E., Mancy K.H., (1975). Enzymatic characterization of phosphorus dissolved in lake water. Science 187:432–434

    Article  CAS  PubMed  Google Scholar 

  • Hieltjes A.H., Lijklema L., (1980). Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 8:130–132

    Google Scholar 

  • Hutchinson G.E., (1957). A Treatise on Limnology, Vol. 1 Geography, Physics, and Chemistry. Wiley, New York

    Google Scholar 

  • Kittredge J.S., Horiguchi M., Williams P.M., (1969). Aminophosphonic acids: biosynthesis by marine phytoplankton. Comp Biochem Physiol 29:859–863

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa K., (2001). Ca2+ and phosphate releases from calcified Chara cell walls in concentrated KCl solution. J Exp Bot 52:223–229

    Article  PubMed  CAS  Google Scholar 

  • Kufel I., Kufel L., (1997). Eutrophication processes in a shallow, macrophyte-dominated lake – nutrient loading to and flow through Lake \Luknajno (Poland). Hydrobiologia 342/343:387–394

    Article  Google Scholar 

  • Kufel L., Kufel I., (2002). Chara beds acting as nutrient sinks in shallow lakes – a review. Aquat. Bot. 72:249–260

    Article  Google Scholar 

  • Kuo S., (1996). Phosphorus. In: Sparks D.L. (eds), Methods of soil analysis: Chemical methods. Part 3. ASA and SSSA, Madison WI, pp. 869–919

    Google Scholar 

  • Littlefield L., Forsberg C., (1965). Absorption and translocation of phosphorus-32 by Chara globularis Thuill. Physiol Plantarum 18:291–296

    Article  CAS  Google Scholar 

  • McConnaughey T., (1991). Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol. Oceanogr. 36:619–628

    Article  CAS  Google Scholar 

  • Murphy J., Riley J., (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31–36

    Article  CAS  Google Scholar 

  • Otsuki A., Wetzel R.G., (1972). Coprecipitation of phosphate with carbonates in a marl lake. Limnol Oceanogr 17:763–767

    CAS  Google Scholar 

  • Reichardt W., Overbeck J., Steubing L., (1967). Free dissolved enzymes in lake waters. Nature 216:1345–1347

    Article  CAS  Google Scholar 

  • Van den Berg M.S., Scheffer M., Coops H., Simons J., (1998). The role of Characean algae in the management of eutrophic shallow lakes. J. Phycol. 34:750–756

    Article  Google Scholar 

  • Vymazal J., (1995). Algae and Element Cycling in Wetlands. Lewis, Chelsea MI, pp. 257–284

    Google Scholar 

  • Wetzel R.G., (1960). Marl encrustation on hydrophytes in several Michigan lakes. Oikos 11:223–236

    Google Scholar 

  • Wodzinski R.J., Ullah A.H., (1996). Phytase. Adv. Appl. Microbiol. 42:263–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Asaeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siong, K., Asaeda, T., Fujino, T. et al. Difference characteristics of phosphorus in Chara and two submerged angiosperm species: implications for phosphorus nutrient cycling in an aquatic ecosystem. Wetlands Ecol Manage 14, 505–510 (2006). https://doi.org/10.1007/s11273-006-9003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-006-9003-9

Keywords

Navigation