Wetlands Ecology and Management

, Volume 14, Issue 1, pp 53–65 | Cite as

Human Facilitation of Phragmites australis Invasions in Tidal Marshes: A Review and Synthesis

  • David BartEmail author
  • David Burdick
  • Randolph Chambers
  • Jean Marie Hartman


Efforts to manage or prevent Phragmites australis invasion in salt and brackish marshes are complicated by the lack of a general causal role for specific human activities. The pattern of invasion within a marsh differs among sites, and each may have different causal histories. A review of the literature finds three establishment/invasion patterns: (1) from stands established on ditch- or creek-bank levees toward interior portions of high marshes, (2) from stands along upland borders toward high marsh interiors, and (3) centroid spread from high marsh stands established in ostensibly random locations. Each invasion pattern seems to have different anthropogenic precursors, therefore preventing generalizations about the role of any one human activity in all sites. However, historical and experimental evidence suggests that regardless of invasion pattern, establishment is much more likely at sites where rhizomes are buried in well-drained, low salinity marsh areas. Any human activity that buries large rhizomes, increases drainage, or lowers salinity increases chances of establishing invasive clones. To integrate these patterns and improve our understanding of the rapid spread of Phragmites, recent evidence has been synthesized into a dichotomous flow chart which poses questions about current site conditions and the potential for proposed activities to change site conditions that may facilitate invasion. This simple framework could help managers assess susceptibility and take preventative measures in coastal marshes before invasion occurs or before removal becomes very expensive.


Anthropogenic influences Control Phragmites australis invasion Prevention Salt marshes 


  1. Able, K.W., Hagan, S.M., Brown, S.A. 2003Mechanisms of Marsh Habitat alteration due to Phragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment for Phragmites removalEstuaries26484494Google Scholar
  2. Adams, J., Bate, G. 1999Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental approachAquat. Bot.64359367CrossRefGoogle Scholar
  3. Agosta, K. 1985The effects of tidally induced change in the creek-bank water table on pore water chemistryEstuar. Coast. Shelf Sci.21398400Google Scholar
  4. Ailstock, M., Norman, C., Bushmann, P. 2001Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlandsRestor. Ecol.94959CrossRefGoogle Scholar
  5. Amesberry, L., Baker, M., Ewanchuk, P., Bertness, M. 2000Clonal integration and the expansion of Phragmites australisEcol. Appl.1011101118Google Scholar
  6. Angradi, T., Hagan, S., Able, K. 2001Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. SpartinaWetlands217592Google Scholar
  7. Armstrong, J., Armstrong, W., Beckett, P. 1992Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidationNew Phytol.120197207Google Scholar
  8. Bart, D. 1997The use of local knowledge in understanding ecological change: a study of salt hay farmers’ knowledge of Phragmites australis invasionRutgers, The State University of New Jersey, Department of AnthropologyNew Brunswick, NJ, USAMA ThesisGoogle Scholar
  9. Bart, D. 2003Environmental determinants of Phragmites australis invasion in a New Jersey salt marsh: interactions among human activities, disturbance, and edaphic conditionsRutgers, Graduate Program in Ecology and Evolution, The State University of New JerseyNew Brunswick, NJ, USAPh.D. DissertationGoogle Scholar
  10. Bart D. submitted. Looking for cause with all the small changes: using event ecology to find human causes of biological invasions. In: McCay B.J. and West P.(eds.), Against the Grain: Event Ecology in Studies of Warfare, Evolution, and Environmental Change.Google Scholar
  11. Bart, D., Hartman, J. 2000Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approachOikos895969CrossRefGoogle Scholar
  12. Bart, D., Hartman, J. 2002Constraints on the establishment of Phragmites australis in a New Jersey salt marshWetlands22201213Google Scholar
  13. Bart, D., Hartman, J. 2003The role of large rhizome dispersal and low salinity windows in the establishment of Common Reed, Phragmites ausralis, in salt marshes: new links to human activitiesEstuaries26437444Google Scholar
  14. Bart D. and Hartman J. in preparation. The performance of seeds and rhizome fragments in the establishment of invasive Phragmites australis stands under different salinity regimes. To be submitted to Aquat. Bot.Google Scholar
  15. Bertness, M., Ewanchuk, P., Silliman, B. 2002Anthropogenic modification of New England salt marsh landscapesProceedings of the National Academy of Sciences of the United States (PNAS)9913951398Google Scholar
  16. Benoit, L., Atkins, R. 1999Impact of Phragmites on the distribution of birds in connecticut tidal marshesWetlands19194208Google Scholar
  17. Burdick, D., Buchsbaum, R., Holt, E. 2001Variation in soil salinity associated with expansion of Phragmites australis in salt marshesEnviron. Exp. Bot.46247261CrossRefGoogle Scholar
  18. Burdick, D., Dionne, M. 1994Comparison of salt marsh restoration and creation techniques in promoting native vegetation and functional valuesOffice of State PlanningConcord, NH, USAGoogle Scholar
  19. Burdick, D., Konisky, R. 2003Understanding the success of Phragmites australis common reed, as it exploits human impacts to coastal marshesEstuaries26407416Google Scholar
  20. Chambers, R. 1997Porewater chemistry associated with Phragmites and Spartina in a Connecticut tidal marshWetlands17360367Google Scholar
  21. Chambers, R., Meyerson, L., Saltonstall, K. 1999Expansion of Phragmites australis into tidal wetlands of North AmericaAquat. Bot.64261273CrossRefGoogle Scholar
  22. Chambers, R., Modzer, T., Ambrose, J. 1998Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal marshAquat. Bot.62161169CrossRefGoogle Scholar
  23. Chambers, R., Osgood, D., Bart, D., Montalto, F. 2003Phragmites invasion and expansion in tidal wetlands: interactions among salinity, sulfide, and hydrologyEstuaries26398406Google Scholar
  24. Ferren, W., Good, R., Walker, R., Arsenault, J. 1981Vegetation and flora of Hog Island, a brackish wetland in the Mullica River, New JerseyBartonia48110Google Scholar
  25. Fogli, S., Marchesini, R., Gerdol, R. 2002Reed (Phragmites australis) decline in a brackish wetland in ItalyMar. Environ. Res.53465479CrossRefPubMedGoogle Scholar
  26. Fürtig, K., Rüegsegger, A., Brunold, C., Brändle, R. 1996Sulphide utilization and injuries in hypoxic roots and rhizomes in common reed (Phragmites australis)Folia Geobot. Phytotax.31143151Google Scholar
  27. Hanganu, J., Mihail, G., Coops, H. 1999Responses of ecotypes of Phragmites australis to increased seawater influence: a field study in the Danube DeltaAquat. Bot.64351358CrossRefGoogle Scholar
  28. Harshburger, J., Burns, V. 1919The vegetation of the Hackensack marsh: a typical American fenT. Wagner Free Institute Sci. Phil.4134Google Scholar
  29. Havens, K., Berquist, H., Priest, W.,III 2003Common reed grass, Phragmites australis expansion into constructed wetlands: are we mortgaging our wetland’s future?Estuaries26417422Google Scholar
  30. Havens, K., Priest, W.,III, Berquist, H. 1997Investigation and long-term monitoring of Phragmites australis within Virginia’s constructed wetland sitesEnviron. Manage.21599605CrossRefPubMedGoogle Scholar
  31. Headlee, T. 1945The Mosquitoes of New Jersey and Their ControlRutgers University PressNew BrunswickGoogle Scholar
  32. Hellings, S., Gallagher, J. 1992The effects of salinity and flooding on Phragmites australisJ. Appl. Ecol.294149Google Scholar
  33. Howes, B., Daces, J., Goehriger, D. 1986Factors controlling growth form of Spartina alterniflora-feedbacks between above gowd production, sediment oxidation, Nitrogen, and SolinityJournal of Ecology74881898Google Scholar
  34. Keller, B. 2000Genetic variation among and within populations of Phragmites australis in the Charles River watershedAquat. Bot.66195208CrossRefGoogle Scholar
  35. Kent, D., Tammi, C., Kelly, J. 1996Large scale, human made disturbances have little effect on the amount of common reed in salt marshes (Massachusetts)Restor. Manage. Notes14172173Google Scholar
  36. Konisky, R., Burdick, D. 2004Effects of stressors on invasive and halophytic plants of New England salt marshes: a framework for predicting response to tidal restorationWetlands24434447Google Scholar
  37. Lathrop, R., Windham, L., Montesano, P. 2003Does Phragmites expansion alter the structure and function of marsh landscapes?Pattern and processes revisited Estuaries26423435Google Scholar
  38. Marks, M., Lapin, B., Randall, J. 1994Phragmites australis (P. communis): threats, management, and monitoringNat. Areas J.14285294Google Scholar
  39. Mendelssohn, I., Morris, J. 2000Ecophysiological controls on the growth of Spartina alternifloraWeinstein, N.Kreeger, D. eds. Concepts and Controversies in Tidal Marsh EcologyKluwer Academic PublishersNew York, USAGoogle Scholar
  40. Minchington, T.E. 2002Precipitation during El Nino correlates with increasing spread of Phragmites australis in New England, USA, coastal marshesMar. Ecol. Prog. Ser.24305309Google Scholar
  41. Mitsch, W., Gosselink, J. 2000Wetlands3John Wiley and Sons Inc.New YorkGoogle Scholar
  42. Montalto, F., Steenhuis, T. 2004The link between hydrology and restoration of tidal marshes in the New York/New Jersey estuaryWetlands24414425Google Scholar
  43. Montalto F., Steenhuis T. and Parlange J. 2002. The Restoration of Tidal Marsh Hydrology. In: Proceedings of The Coastal Environment 2002 International Conference. Wessex Institute of Technology Press, Southampton, UK.Google Scholar
  44. Niering W., Warren R. and Weymouth C. 1977. Our dynamic tidal marshes: vegetation changes as revealed by peat analysis. Connecticut Arboretum Bulletin No. 22.Google Scholar
  45. Nuttle, W. 1988The extent of lateral water movement in the sediments of a New England salt marshWater Resour. Res.2420772085Google Scholar
  46. Ostendorp, W. 1989Dieback of reeds in Europe-a critical review of literatureAquat. Bot.35526CrossRefGoogle Scholar
  47. Rice, D., Rooth, J., Stevenson, J. 2000Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshesWetlands20280299Google Scholar
  48. Rolletschek, H., Hartzendorf, T. 2000Effects of salinity and convective rhizome ventilation on amino acid and carbohydrate patterns of Phragmites australis populations in the Neusiedler See region of Austria and HungaryNew Phytol.14695105CrossRefGoogle Scholar
  49. Roman, C., Niering, W., Warren, R. 1984Salt marsh vegetation change in response to tidal restrictionEnviron. Manage.8141150CrossRefGoogle Scholar
  50. Rooth, J., Windham, L. 2000Phragmites on death row: is biocontrol really warranted?Wetland J.122937Google Scholar
  51. Saltonstall, K. 2002Cryptic invasion be a non-native genotype of the common reed, Phragmites australis, into North AmericaProceedings of the National Academy of Sciences (PNAS)9924452449Google Scholar
  52. Seliskar, D., Smart, K., Higashikubo, B., Gallagher, J. 2004Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlandsWetlands24426433Google Scholar
  53. Templer, P., Findlay, S., Wigand, C. 1998Sediment Chemistry associated with Native and Non-Native emergent macrophytes of a Hudson Rive Marsh ecosystemWetlands187078Google Scholar
  54. Thompson, D., Shay, J. 19891st year response of a Phragmites marsh community to seasonal burningCanadian J. Bot.6714481455Google Scholar
  55. Toorn, J., Mook, J. 1982The influences of environmental factors and management on stands of Phragmites australis. 1. Effects of burning, frost, and insect damage on shoot density and shoot sizeJ. Appl. Ecol.19477499Google Scholar
  56. Warren, R., Fell, P., Grimsby, J., Buck, E., Rilling, C., Fertik, R. 2001Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut RiverEstuaries2490107Google Scholar
  57. Weisner, S., Graneli, W., Ekstam, B. 1993Influence of submergence on growth of seedlings of Scirpus lacustris and Phragmites australisFreshwater Bot.29371375Google Scholar
  58. Wijte, A., Gallagher, J. 1996aEffects of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae)Am. J. Bot.8313371342Google Scholar
  59. Wijte, A., Gallagher, J. 1996bEffects of oxygen availability and salinity on early life history stages of salt marsh plants II. Early seedling development advantage of Spartina alterniflora over Phragmites australis (Poaceae)Am. J. Bot.8313431350Google Scholar
  60. Windham, L. 1995Effects of the Phragmites australis invasion on aboveground biomass and soil properties in brackish tidal mars of the Mullica River, NJDepartment of Geography, Rutgers, The State University of New JerseyNew Brunswick, NJ, USAMS ThesisGoogle Scholar
  61. Windham, L. 1999Effects of an invasive reedgrass, Phragmites australis, on nitrogen cycling in brackish tidal marshes of New York and New JerseyRutgers, The State University of New JerseyNew Brunswick, NJPh.D. Dissertation, Graduate Program in Ecology and EvolutionGoogle Scholar
  62. Windham, L., Lathrop, R. 1999Effects of Phragmites australis (Common Reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New JerseyEstuaries22927935Google Scholar
  63. Windham, L., Meyerson, L. 2003Effects of Common Reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the Northeastern U.SEstuaries26452464Google Scholar
  64. Winogrond, H., Kiviat, E. 1997Invasion of Phragmites australis in the tidal marshes of the Hudson River. Section VI.Nieder, W.C.Waldman, J.R. eds. Final Reports of the Tibor T. Polgar Fellowship Program, 1996Polgar Fellowship ProgramNew YorkGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David Bart
    • 1
    • 2
    Email author
  • David Burdick
    • 3
  • Randolph Chambers
    • 4
  • Jean Marie Hartman
    • 1
  1. 1.Graduate Program in Ecology and Evolution RutgersThe State University of New JerseyNew BrunswickUSA
  2. 2.Department of BotanyUniversity of Wisconsin-MadisonUSA
  3. 3.Jackson Estuarine Laboratory, Department of Natural Resources, Center for Marine BiologyUniversity of New Hampshire DurhamUSA
  4. 4.Department of BiologyVIMS College of William and Mary WilliamsburgUSA

Personalised recommendations