Wetlands Ecology and Management

, Volume 13, Issue 5, pp 553–568 | Cite as

Impacts of Seawalls on Saltmarsh Plant Communities in the Great Bay Estuary, New Hampshire USA

  • Catherine M. Bozek
  • David M. BurdickEmail author


Seawalls are often built along naturally dynamic coastlines, including the upland edge of salt marshes, in order to prevent erosion or to extend properties seaward. The impacts of seawalls on fringing salt marshes were studied at five pairs of walled and natural marshes in the Great Bay Estuary of New Hampshire, USA. Marsh plant species and communities showed no difference in front of walls when compared with similar elevations at paired controls. However, seawalls eliminated the vegetative transition zone at the upper border. Not only did the plant community of the transition zone have high plant diversity relative to the low marsh, but it varied greatly from site to site in the estuary. The effects of seawall presence on other marsh processes, including sediment movement, wrack accumulation, groundwater flow, and vegetation distribution and growth, were examined. Although no statistically significant effects of seawalls were found, variation in the indicators of these processes were largely controlled by wave exposure, site-specific geomorphology and land use, and distance of the sampling station from the upland. Trends indicated there was more sediment movement close to seawalls at high energy sites and less fine grain sediment near seawalls. Both trends are consistent with an increase in energy from wave reflection. The distribution of seawalls bordering salt marshes was mapped for Great and Little Bays and their rivers. Throughout the study area, 3.54% of the marshes were bounded by shoreline armoring (5876 m of seawalls along 165.8 km of marsh shoreline). Localized areas with high population densities had up to 43% of marshes bounded by seawalls. Coastal managers should consider limiting seawall construction to preserve plant diversity at the upper borders of salt marshes and prevent marsh habitat loss due to transgression associated with sea level rise.

Key words

Mapping Physical exposure Plant diversity Sediment dynamics Shoreline armoring Wave reflection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, I.Y., Choi, J.W. 1998Macrobenthic communities impacted by anthropogenic activities in an intertidal sand flat on the west coast (Yellow Sea) of KoreaMar. Pollut. Bull.36808817CrossRefGoogle Scholar
  2. Anisfeld, S.C., Tobin, M.J., Benoit, G. 1999Sedimentation rates in flow-restricted and restored salt marshes in Long Island SoundEstuaries22231244Google Scholar
  3. Barbour, M.G., Rejmanek, M., Johnson, A.F., Pavlik, B.M. 1987Beach vegetation and plant distribution patterns along the northern Gulf of MexicoPhytocoenologia15201233Google Scholar
  4. Bertness, M.D. 1991aInterspecific interactions among high marsh perennials in a New England salt marshEcology72125137Google Scholar
  5. Bertness, M.D. 1991bZonation of Spartina patensSpartina alterniflora in a New England salt marshEcology72138148Google Scholar
  6. Bertness, M.D., Ellison, A.M. 1987Determinants of pattern in a New England salt marsh plant communityEcol. Monogr.57129147Google Scholar
  7. Boorman, L.A. 1992The environmental consequences of climatic change on British salt marsh vegetationWetlands Ecol. Manage.21121CrossRefGoogle Scholar
  8. Boorman, L.A. 1999Salt marshes-present functioning and future changeMangroves Salt Marsh.3227241CrossRefGoogle Scholar
  9. Boorman, L., Hazelden, J. 1995Saltmarsh creation and management for coastal defenseHealy, M.G.Doody, J.P. eds. Directions in European Coastal ManagementSamara Publishing LimitedCardigan, UK175183Google Scholar
  10. Brinson, M.M., Christian, R.R., Blum, L.K. 1995Multiple states in the sea-level induced transition from terrestrial forest to estuaryEstuaries18648659Google Scholar
  11. Connell, J.H. 1978Diversity in tropical rain forests and coral reefsScience19913021310Google Scholar
  12. Costanza, R., dȁ9Arge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., Oneill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., vandenBelt, M. 1997The value of the world's ecosystem services and natural capitalNature387253260CrossRefGoogle Scholar
  13. Craft, C.B., Seneca, E.D., Broome, S.W. 1991Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustionEstuaries14175179Google Scholar
  14. DeSimone L.A., Howes B.L., Goehringer D.G. and Weiskel P.K. 1998. Wetland Plants and Algae in a Coastal MarshOrleans, Cape CodMassachusetts. Water-Resources Investigations Report 98–4011. United States Geological Survey, MarlboroughMassachusetts, USA.Google Scholar
  15. Duivenvoorden, J.F., Svenning, J.C., Wright, S.J. 2002Beta diversity in tropical forestsScience295636637CrossRefPubMedGoogle Scholar
  16. ESRI1999ArcView GIS 3.2Environmental Systems Research Institute (ESRI)Redlands, CaliforniaUSAGoogle Scholar
  17. Folk, R.L. 1980Petrology of Sedimentary RocksHemphillAustin, Texas, USAGoogle Scholar
  18. Gleason, H.A., Cronquist, A. 1991Manual of Vascular Plants of Northeastern United States and Adjacent CanadaNew York Botanical GardenNew York, USAGoogle Scholar
  19. Harmsworth, G.C., Long, S.P. 1986An assessment of saltmarsh erosion in Essex, Englandwith reference to the Dengie PeninsulaBiol. Conserv.35377387CrossRefGoogle Scholar
  20. Harris, J.H. 1981Study to Determine the Impact of Landward Bulkheads or Alternative Structures on MarshesNational Marine Fisheries ServiceGloucesterMassachusetts, USAGoogle Scholar
  21. Hartman, J.M. 1988Recolonization of small disturbance patches in a New England salt marshAm. J. Botany7516251631Google Scholar
  22. Harvey, J.W., Odum, W.E. 1990The influence of tidal marshes on upland groundwater discharge to estuariesBiogeochemistry10217236Google Scholar
  23. Houwing, E.J., van Duin, W.E., Smit der Waaij, Y., Dijkema, K.S., Terwindt, J.H.J. 1999Biological and abiotic factors influencing the settlement and survival of Salicornia dolichostachya in the intertidal pioneer zoneMangroves Salt Marsh.3197206CrossRefGoogle Scholar
  24. Jacobson, H.A., Jacobson, G.L.,Jr., Kelley, J.T. 1987Distribution and abundance of tidal marshes along the coast of MaineEstuaries10126131Google Scholar
  25. Jacobson M. 1997. Resource management perspective on seawalls and their effects. Proceedings from the Combined Australasian Coastal Engineering and Ports Conference, Christchurch, NZ, pp. 231–236.Google Scholar
  26. Keddy, P.A. 1985Wave disturbance on lakeshores and the within-lake distribution of Ontario's Atlantic coastal plain floraCan. J. Botany63656660Google Scholar
  27. Kennedy, C.W., Bruno, J.F. 2000Restriction of the upper distribution of New England cobble beach plants by wave-related disturbanceJ. Ecol.88856868CrossRefGoogle Scholar
  28. Kent, M., Coker, P. 1992Vegetation Description and Analysis: A Practical ApproachCRC PressBoca Raton, FloridaUSAGoogle Scholar
  29. King, S.E., Lester, J.N. 1995The value of salt marsh as a sea defensePolluti. Econ.30180189Google Scholar
  30. Knutson, P.L., Ford, J.C., Inskeep, M.R., Oyler, J. 1981National survey of planted salt marshes (vegetative stabilization and wave stress)Wetlands1129157Google Scholar
  31. Levine, J.M., Brewer, J.S., Bertness, M.D. 1998Nutrients, competition, and plant zonation in a New England salt marshJ. Ecol.86285292CrossRefGoogle Scholar
  32. Mendelssohn, I.A., Morris, J.T. 2000Eco-physiological controls on the productivity of Spartina alterniflora LoiselWeinstein, M.P.Kreeger, D.A. eds. International Symposium: Concepts and Controversies in Tidal Marsh EcologyKluwer Academic PublishersDordrechtThe Netherlands5980Google Scholar
  33. Mitsch, W.J., Gosselink, J.G. 2000Wetlands, 3rd edJohn Wiley and SonsNew York, USAGoogle Scholar
  34. Morgan P.A. 2000. Conservation and Ecology of Fringing Salt Marshes Along the Southern Maine/New Hampshire Coast. Ph. D. Dissertation, University of New HampshireDurhamNew HampshireUSA.Google Scholar
  35. Morgan, P.A., Short, F.T. 2002Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire U.S.ARestor. Ecol.10461473CrossRefGoogle Scholar
  36. Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H., Woodfin, R.M. 1994Declining biodiversity can alter the performance of ecosystemsNature368734736CrossRefGoogle Scholar
  37. Nuttle, W.K., Brinson, M.M., Cahoon, D., Callaway, J.C., Christian, R.R., Chmura, G.L., Conner, W.H., Day, R.H., Ford, M., Grace, J., Lynch, J.C., Orson, R.A., Parkinson, R.W., Reed, D., Rybczyk, J.M., Smith, T.J.,III, Stumpf, R.P., Williams, K. 1997Conserving coastal wetlands despite sea level riseEos78257264Google Scholar
  38. Peterson, R.T., McKenny, M. 1968A Field Guide to Wildflowers: Northeastern and North-Central North AmericaHoughton MifflinNew York, USAGoogle Scholar
  39. Podani, J., Csontos, P., Tamas, J. 2000Additive trees in the analysis of community dataCommun. Ecol.13342Google Scholar
  40. Pope, J. 1997Responding to coastal erosion and flooding damagesJ. Coastal Res.13704710Google Scholar
  41. Portnoy, J.W., Valiela, I. 1997Short-term effects of salinity reduction and drainage on salt-marsh biogeochemical cycling and Spartina (cordgrass) productionEstuaries20569578Google Scholar
  42. Rand, T.A. 2000Seed dispersal, habitat suitability, and the distribution of halophytes across a salt marsh tidal gradientJ. Ecol.88608621CrossRefGoogle Scholar
  43. Reed, D.J. 1989Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter stormsEstuaries12222227Google Scholar
  44. SAS Institute. 1997. JMP 3.1. SAS InstituteInc., Cary, North CarolinaUSA.Google Scholar
  45. Schultz, G., Ruppel, C. 2002Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interfaceJ. Hydrol.260255269CrossRefGoogle Scholar
  46. Smart, R.M., Barko, J.W. 1980Nitrogen nutrition and salinity tolerance of Distichlis spicataSpartina alternifloraEcology61630638Google Scholar
  47. SPSS. 2000. SYSTAT 10. SPSS, Inc., ChicagoIllinois, USA.Google Scholar
  48. Tilman, D., Downing, J.A. 1994Biodiversity and stability in grasslandsNature367363365CrossRefGoogle Scholar
  49. Tilman, D., Wedin, D., Knops, J. 1996Productivity and sustainability influenced by biodiversity in grassland ecosystemsNature379718720CrossRefGoogle Scholar
  50. Tiner, R.W.,Jr. 1987A Field Guide to Coastal Wetland Plants of the Northeastern United StatesUniversity of Massachusetts PressAmherstMassachusetts, USAGoogle Scholar
  51. Tolley, P.M., Christian, R.R. 1999Effects of increased inundation and wrack deposition on a high salt marsh plant communityEstuaries22944954Google Scholar
  52. Valiela, I., Cole, M.L. 2002Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loadsEcosystems592102CrossRefGoogle Scholar
  53. Valiela, I., Rietsma, C.S. 1995Disturbance of salt marsh vegetation by wrack mats in Great Sippewissett MarshOecologia102106112Google Scholar
  54. Ward, L.G., Mathieson, A.C., Weiss, S.J. 1993Tidal Wetlands in the Great Bay/Piscataqua River Estuarine SystemNew Hampshire Coastal ProgramConcordNew HampshireUSAGoogle Scholar
  55. Zedler, J.B., Callaway, J.C., Sullivan, G. 2001Declining biodiversity: why species matter and how their functions might be restored in Californian tidal marshesBioscience5110051018Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Natural Resources, Jackson Estuarine LaboratoryUniversity of New HampshireDurhamUSA

Personalised recommendations