Skip to main content
Log in

Degradation of Polypropylene Microplastics by a Consortium of Bacteria Colonizing Plastic Surface Waste from Jakarta Bay

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Plastics that pollute the environment can be depleted to produce small plastic particles called microplastics. Microplastics have a wide range of negative effects on ecosystem health because they can enter food webs. This study has aimed to assess the ability of a consortium of bacteria colonizing plastic waste from Jakarta Bay to degrade polypropylene microplastics. The plastic waste was collected from 3 sampling points (Muara Kamal, Muara Angke, and Marina) and was enriched in the medium Zobell marine broth for 3d at 27 ˚C, at 125 rpm in an incubator shaker. The obtained bacterial consortium was then tested for their degrading activity on 0.2% polyethylene (PP) microplastics using Mineral Salt Medium (4.5 g/L K2HPO4, 0.2 g/L MgSO4.7H2O, 0.1 g/L CaCl2, 0.1 g/L NaCl, 0.002 g/L FeCl3, 0.1 g/L (NH4)2SO4) at 27 ˚C, 125 rpm for 60d. The results showed that the bacterial consortium degraded PP microplastic in the range of 2.16–6.6% (dry weight basis). Among the three sampling points, the bacterial consortium from Muara Angke exhibited the highest degradation activity. Damage to PP microplastics resulting from the bacterial degradation tests was confirmed using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM) analyses, which showed the damage to the chemical bonds and the surface of the microplastic. These findings suggest that the Muara Angke bacterial consortium is a viable candidate for PP microplastic remediation while posing no risk to human health or the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All required data supporting the findings are available in the manuscript. If the readers require any additional data, the same will be shared electronically by the authors whenever required.

References

  • Afianti, N.F., Rachman, A., Hatmanti, A., Yogaswara, D., Anggiani, M., Fitriya, N., Darmayati, Y., (2021). Microbial Biofilm of Plastic in Tropical Marine Environment and Their Potential for Bioremediation of Plastic Waste. Journal of Ecological Engineering 23(4): 261–275. https://doi.org/10.12911/22998993/145463

  • Ajoku (2013). Kinetic Model of pH Effect on Bioremediation of Crude Petroleum Contaminated Soil 1 Model Development. American Journal of Chemical Engineering 1(1): 6. https://doi.org/10.11648/j.ajche.20130101.12.

  • Alariqi, S. A., Kumar, A. P., & Rao, B. S. M. (2006). Singh RP (2006) Biodegradation of γ-sterilised biomedical polyolefins under composting and fungal culture environments. Polymer Degradation and Stability, 91(5), 1105–1116. https://doi.org/10.1016/j.polymdegradstab.2005.07.004

    Article  CAS  Google Scholar 

  • Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth Kinetics and Biodeterioration of Polypropylene Microplastics by Bacillus sp. and Rhodococcus sp. Isolated from Mangrove Sediment. Marine Pollution Bulletin, 127, 15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

    Article  CAS  Google Scholar 

  • Barboza, L. G. A., Otero, X., Fernández, E. V., Vieira, L. R., Fernandes, J. O., Cunha, S. C., & Guilhermino, L. (2023). Are Microplastics Contributing to Pollution-induced Neurotoxicity? A Pilot Study with Wild Fish in a Real Scenario. Heliyon, 9(1), E13070. https://doi.org/10.1016/j.heliyon.2023.e13070

    Article  CAS  Google Scholar 

  • Bhagwat, G., O’Connor, W., Grainge, I., & Palanisami, T. (2021). Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Frontiers in Microbiology, 12, 1–10. https://doi.org/10.3389/fmicb.2021.687118

    Article  Google Scholar 

  • Bhardwaj, L.K., (2023). Occurrence of Microplastics (MPs) in Antarctica and Its Impact on The Health of Organisms. Maritime Technology and Research 6(2), 265418. https://doi.org/10.33175/mtr.2024.265418.

  • Bhardwaj, L. K., Rath, P., Yadav, P., & Gupta, U. (2024). Microplastic Contamination, an Emerging Threat to the Freshwater Environment and Human Health: A Systematic Review. Env Syst Res, 13, 8. https://doi.org/10.1186/s40068-024-00338-7

    Article  Google Scholar 

  • Buchholz, P.C.F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover, L.L., Chow, J., Streit, W.R., Pleiss, J., (2022). Plastics Degradation by Hydrolytic Enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics 90(7): 1443–1456. https://doi.org/10.1002/prot.26325.

  • Cordova, M. R., & Nurhati, I. S. (2019). Major Sources and Monthly Variations in The Release of Land-derived Marine Debris from the Greater Jakarta area Indonesia. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-55065-2

    Article  CAS  Google Scholar 

  • de Villalobos, N. F., Costa, M. C., & Marín-Beltrán, I (2022) A community of marine bacteria with potential to biodegrade petroleum-based and biobased microplastics. Marine Pollution Bulletin, 185. https://doi.org/10.1016/j.marpolbul.2022.114251.

  • Erni-Cassola, G., Zadjelovic, V., Gibson, M. I., & Christie-Oleza, J. A. (2019). Distribution of plastic polymer types in the marine environment; A meta-analysis. Journal of Hazardous Materials, 369, 691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067

    Article  CAS  Google Scholar 

  • Gao, R., & Sun, C. (2021). A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. Journal of Hazardous Materials, 416, 125928. https://doi.org/10.1016/j.jhazmat.2021.125928

    Article  CAS  Google Scholar 

  • Gupta, K. K., & Devi, D. (2020). Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface. Heliyon, 6(7), e04398. https://doi.org/10.1016/j.heliyon.2020.e04398

    Article  Google Scholar 

  • Habib, S., Iruthayam, A., Shukor, M. Y. A., Alias, S. A., Smykla, J., & Yasid, N. A. (2020). Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria. Polymers, 12(11), 1–12. https://doi.org/10.3390/polym12112616

    Article  CAS  Google Scholar 

  • Helen, A. S., Uche, E. C., & Hamid, F. S (2017) Screening for Polypropylene Degradation Potential of Bacteria Isolated from Mangrove Ecosystems in Peninsular Malaysia. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(4), 245–251. https://doi.org/10.17706/ijbbb.2017.7.4.245-251.

  • Ihwah, A., Deoranto, P., Wijana, S., & Dewi, I. A (2018) Comparative study between Federer and Gomez method for number of replication in complete randomized design using simulation: Study of Areca Palm (Areca catechu) as organic waste for producing handicraft paper. IOP Conference Series: Earth and Environmental Science, 131(1). https://doi.org/10.1088/1755-1315/131/1/012049.

  • Iwamoto, A. (1994). Tokiwa Y (1994) Enzymatic degradation of plastics containing polycaprolactone Polym. Degrad. Stab., 45(2), 205–213. https://doi.org/10.1016/0141-3910(94)90138-4

    Article  CAS  Google Scholar 

  • Jeon, J. M., Park, S. J., Choi, T. R., Park, J. H., Yang, Y. H., & Yoon, J. J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation and Stability, 191, 109662. https://doi.org/10.1016/j.polymdegradstab.2021.109662

    Article  CAS  Google Scholar 

  • Kloska, A., Cech, G. M., Sadowska, M., Krause, K., Szalewska-Pałasz, A., & Olszewski, P. (2020). Adaptation of the marine bacterium Shewanella baltica to low temperature stress. International Journal of Molecular Sciences, 21(12), 1–22. https://doi.org/10.3390/ijms21124338

    Article  CAS  Google Scholar 

  • Kotova, I. B., Taktarova, Y. V., Tsavkelova, E. A., Egorova, M. A., Bubnov, I. A., Malakhova, D. V., Shirinkina, L. I., Sokolova, T. G., & Bonch-Osmolovskaya, E. A. (2021). Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (russian Federation), 90(6), 671–701. https://doi.org/10.1134/S0026261721060084

    Article  CAS  Google Scholar 

  • Kristanti, R.A., Wong, W.L., Darmayati, Y., Hatmanti, A., Wulandari, N.F., Sibero, M.T., Afianti, N.F., Hernandes, E., Lopez-Marinez, F., (2022). Characteristics of microplastic in commercial aquatic organisms. Tropical Aquatic and Soil Pollution 2(2): 134–158. https://doi.org/10.53623/tasp.v2i2.134.

  • Kristanti, R. A., Hadibarata, T., Wulandari, N. F., Sibero, M. T., Darmayati, Y., & Hatmanti, A. (2023). Overview of microplastics in the environment: Type, source, potential effects and removal strategies. Biopro Biosyst Eng, 46(3), 429–441. https://doi.org/10.1007/s00449-022-02784-y

    Article  CAS  Google Scholar 

  • Lim, A.H.J., Kristanti, R.A., Endrotjahyo, E., Thao, N.T.T., Adeyemi, D.A., (2023). Microplastic ingestion in aquatic animals in South East Asia. Tropical Environment, Biology, and Technology 1(1), 25–36. https://doi.org/10.53623/tebt.v1i1.223.

  • Limonta, G., Mancia, A., Abelli, L., Fossi, M. C., Caliani, I., & Panti, C. (2021). Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comparative Biochemistry and Physiology Part - c: Toxicology and Pharmacology, 245, 109037. https://doi.org/10.1016/j.cbpc.2021.109037

    Article  CAS  Google Scholar 

  • Miri, S., Saini, R., Davoodi, S. M., Pulicharla, R., Brar, S. K., & Magdouli, S. (2022). Biodegradation of microplastics: Better late than never. Chemosphere, 286(P1), 131670. https://doi.org/10.1016/j.chemosphere.2021.131670

    Article  CAS  Google Scholar 

  • Mohan, A. J., Sekhar, V. C., Bhaskar, T., & Nampoothiri, K. M. (2016). Microbial assisted high impact polystyrene (HIPS) degradation. Bioresource Technology, 213, 204–207.

    Article  CAS  Google Scholar 

  • Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B (2020) Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.580709.

  • Oliveira, J., Belchior, A., da Silva, V. D., Rotter, A., Petrovski, Ž., Almeida, P. L., Lourenço, N. D., & Gaudêncio, S. P (2020) Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.567126.

  • Oliya, P., Singh, S., Goel, N., Singh, U. P., & Srivastava, A. K. R. (2020). Polypropylene degradation potential of microbes isolated from solid waste dumping site. Pollution Research, 39(2), 268–277.

    CAS  Google Scholar 

  • Othman, A. R., Hasan, H. A., Muhamad, M. H., Ismail, N., & ’Izzati, & Abdullah, S. R. S,. (2021). Microbial degradation of microplastics by enzymatic processes: A review. Environmental Chemistry Letters, 19(4), 3057–3073. https://doi.org/10.1007/s10311-021-01197-9

    Article  CAS  Google Scholar 

  • Sekiguchi, T., Saika, A., Nomura, K., Watanabe, T., Watanabe, T., Fujimoto, Y., Enoki, M., Sato, T., Kato, C., & Kanehiro, H. (2011). Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ε-caprolactone)-degrading bacteria. Polymer Degradation and Stability, 96(7), 1397–1403. https://doi.org/10.1016/j.polymdegradstab.2011.03.004

    Article  CAS  Google Scholar 

  • Sheridan, E. A., Fonvielle, J. A., Cottingham, S., Zhang, Y., Dittmar, T., Aldridge, D. C., & Tanentzap, A. J. (2022). Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-31691-9

    Article  CAS  Google Scholar 

  • Sulistyani, M., & Huda, N. (2018). Perbandingan Metode Transmisi dan Reflektansi Pada Pengukuran Polistirena Menggunakan Instrumentasi Spektroskopi Fourier Transform Infra Red. Indonesian Journal of Chemical Science, 7(2), 195–198.

    Google Scholar 

  • Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  Google Scholar 

  • Trikurniadewi, N., Khiftiyah, A. M., Sari, S. K., Ifananda, W., & Suryani, D. I (2022) Jurnal Riset Kesehatan Isolates of Polypropylene-Degrading Bacteria. 11(2), 89–95. https://doi.org/10.31983/jrk.v11i2.8815.

  • Vásquez-Murrieta, M. S., Hernández-Hernández, O. J., Cruz-Maya, J. A., Cancino-Díaz, J. C., & Jan-Roblero, J (2016) Approaches for Removal of PAHs in Soils: Bioaugmentation, Biostimulation and Bioattenuation. Soil Contamination - Current Consequences and Further Solutions. https://doi.org/10.5772/64682.

  • Wang, P., Zhao, J., Ruan, Y., Cai, X., Li, J., Zhang, L., & Huang, H. (2022). Degradation of Polypropylene by the Pseudomonas aeruginosa Strains LICME WZH-4 and WGH-6. Journal of Polymers and the Environment, 30(9), 3949–3958. https://doi.org/10.1007/s10924-022-02480-8

    Article  CAS  Google Scholar 

  • Wei, R., & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microbial Biotechnology, 10(6), 1308–1322. https://doi.org/10.1111/1751-7915.12710

    Article  CAS  Google Scholar 

  • Wilkes, R.A. and Aristilde, L., (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), pp. 582–593.

  • Xu, L., Crawford, K., & Gorman, C. B. (2011). Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules, 44(12), 4777–4782. https://doi.org/10.1021/ma2000948

    Article  CAS  Google Scholar 

  • Yedier, S., Yalçınkaya, S. K., & Bostancı, D (2023) Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. Aquatic Toxicology, 259. https://doi.org/10.1016/j.aquatox.2023.106540.

  • Zeenat, Elahi, A., Bukhari, D. A., Shamim, S., & Rehman, A (2021) Plastics degradation by microbes: A sustainable approach. Journal of King Saud University - Science, 33(6), 101538 https://doi.org/10.1016/j.jksus.2021.101538

  • Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Frontiers in Environmental Science, 9, 1–14. https://doi.org/10.3389/fenvs.2021.675803

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Research Center for Oceanography, National Research and Innovation Agency for their support in facilitating this work. Additionally, we acknowledge the valuable collaboration with Curtin University Malaysia and Universitas Negeri Jakarta. Special thanks are extended to Edy Endrotjahyo and Helena Manik for their technical assistance in the Marine Microbiology Laboratory, Laboratorium Terpadu Riset Oseanografi (LATERIO).

Author information

Authors and Affiliations

Authors

Contributions

MA: have contributed as given with respect to conceptualization, methodology development, data collection, investigation, original draft preparation, writing, and editing.

RAK: conceptualization, data interpretation, validation, visualization, writing (original draft, review, and editing) and correspondence.

TH: original draft preparation, writing, and editing.

MAS: conceptualization, data collection, original draft preparation, writing.

THK: conceptualization, methodology development.

Corresponding authors

Correspondence to Milani Anggiani or Risky Ayu Kristanti.

Ethics declarations

Ethics approval and consent to participate

All authors of the manuscript certify that this manuscript fully complies with the ethical standard of this journal.

Consent for publication

The authors are in full agreement with this publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anggiani, M., Kristanti, R.A., Hadibarata, T. et al. Degradation of Polypropylene Microplastics by a Consortium of Bacteria Colonizing Plastic Surface Waste from Jakarta Bay. Water Air Soil Pollut 235, 308 (2024). https://doi.org/10.1007/s11270-024-07113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07113-5

Keywords

Navigation