Skip to main content
Log in

Insights into the Degradation and Mechanism of the Enhanced Persulfate Degradation of Tetracycline using an Efficient 3D Copper Metal–Organic Frameworks

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

One 3D Cu-based metal–organic frameworks (Cu-MOFs) was prepared by hydrothermal method as a catalyst for activating persulfate to degrade tetracycline. The degradation efficiency of TC was investigated under various conditions including catalyst dosage, pH, and persulfate concentration. The effects of these factors on the degradation efficiency were examined and discussed in detail. Cu-MOFs/PS catalytic systems can degrade 96% of TC under suitable conditions. The quenching experiments showed that there are both free radical and non-free radical pathways in TC degradation, with singlet-line substitution of oxygen playing a major role. The stability of the material structure was explored through cyclic experiments. The degradation pathway of TC was investigated through the analysis of intermediate products. Additionally, the toxicity of these intermediate products was evaluated using toxicity analysis software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azhar, M. R., Arafat, Y., Khiadani, M., Wang, S., & Shao, Z. (2020). Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. Composites Part b: Engineering, 192, 107895.

    Article  Google Scholar 

  • Balakrishnan, A., Chinthala, M., Polagani, R. K., & Vo, D. N. (2023). Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review. Environmental Research, 216, 114660.

    Article  CAS  Google Scholar 

  • Bentiss, F., Jama, C., Mernari, B., El Attari, H., El Kadi, L., Lebrini, M., Traisnel, M., & Lagrenée, M. (2009). Corrosion control of mild steel using 3, 5-bis (4-methoxyphenyl)-4-amino-1, 2, 4-triazole in normal hydrochloric acid medium. Corrosion Science, 51, 1628–1635.

    Article  CAS  Google Scholar 

  • Boyce, J. R. (2019). The paradox of value, directed technical change, and the relative abundance of the chemical elements. Resource and Energy Economics, 58, 101114.

    Article  Google Scholar 

  • Chen, Y.-Q., Li, G.-R., Chang, Z., Qu, Y.-K., Zhang, Y.-H., & Bu, X.-H. (2013). A Cu (I) metal–organic framework with 4-fold helical channels for sensing anions. Chemical Science, 4, 3678–3682.

    Article  CAS  Google Scholar 

  • Fu, H., Ma, S., Zhao, P., Xu, S., & Zhan, S. (2019). Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism. Chemical Engineering Journal, 360, 157–170.

    Article  CAS  Google Scholar 

  • Gao, F., Li, Y., & Xiang, B. (2018). Degradation of bisphenol A through transition metals activating persulfate process. Ecotoxicology and Environmental Safety, 158, 239–247.

    Article  CAS  Google Scholar 

  • Guan, C., Jiang, J., Pang, S., Ma, J., Chen, X., & Lim, T.-T. (2019). Nonradical transformation of sulfamethoxazole by carbon nanotube activated peroxydisulfate: Kinetics, mechanism and product toxicity. Chemical Engineering Journal, 378, 122147.

    Article  CAS  Google Scholar 

  • He, B., Liu, R., Ren, J., Tang, C., Zhong, Y., & Hu, Y. (2017). One-step solvothermal synthesis of petalous carbon-coated Cu+-doped CdS nanocomposites with enhanced photocatalytic hydrogen production. Langmuir, 33, 6719–6726.

    Article  CAS  Google Scholar 

  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366.

    Article  CAS  Google Scholar 

  • Hu, L., Wang, P., Zhang, G., Liu, G., Li, Y., Shen, T., & Crittenden, J. C. (2020). Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation. Chemical Engineering Journal, 383, 123140.

    Article  CAS  Google Scholar 

  • Huang, C., Wu, J., Song, C., Ding, R., Qiao, Y., Hou, H., Chang, J., & Fan, Y. (2015). Reversible conversion of valence-tautomeric copper metal–organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: A redox-switchable catalyst for C-H bonds activation reaction. Chemical Communications, 51, 10353–10356.

    Article  CAS  Google Scholar 

  • Juntrapirom, S., Santatiwongchai, J., Watwiangkham, A., Suthirakun, S., Butburee, T., Faungnawakij, K., Chakthranont, P., Hirunsit, P., & Rungtaweevoranit, B. (2021). Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO2 conversion to C2 products. Catalysis Science & Technology, 11, 8065–8078.

    Article  CAS  Google Scholar 

  • Karmakar, A., Velasco, E., & Li, J. (2022). Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants. National Science Review, 9, nwac091.

    Article  CAS  Google Scholar 

  • Lee, H., Lee, H.-J., Jeong, J., Lee, J., Park, N.-B., & Lee, C. (2015). Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chemical Engineering Journal, 266, 28–33.

    Article  CAS  Google Scholar 

  • Liu, Z., Su, R., Sun, X., Zhou, W., Gao, B., Yue, Q., & Li, Q. (2020). The obvious advantage of amino-functionalized metal-organic frameworks: As a persulfate activator for bisphenol F degradation. Science of the Total Environment, 741, 140464.

    Article  CAS  Google Scholar 

  • Liu, P., Wu, Z., Abramova, A. V., & Cravotto, G. (2021a). Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrasonics Sonochemistry, 74, 105566.

    Article  CAS  Google Scholar 

  • Liu, Y., Qu, G., Sun, Q., Jia, H., Wang, T., & Zhu, L. (2021b). Endogenously activated persulfate by non-thermal plasma for Cu(II)-EDTA decomplexation: Synergistic effect and mechanisms. Chemical Engineering Journal, 406, 126774.

    Article  CAS  Google Scholar 

  • Luo, Y., Liu, C., & Zhao, M. (2021). CoFe-LDO nanoparticles as a novel catalyst of peroxymonosulfate (PMS) for histidine removal. Environmental Science and Pollution Research, 29, 16517–16528.

    Article  Google Scholar 

  • Ma, Z., Cheng, Z., Yang, Y., Nie, C., Wu, D., Yang, T., Wang, S., & Li, D. (2023). Acid-modified anaerobic biogas residue biochar activates persulfate for phenol degradation: Enhancement of the efficiency and non-radical pathway. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 663, 131121.

    Article  CAS  Google Scholar 

  • Miskiewicz, A., Starosta, W., Walczak, R., & Zakrzewska-Koltuniewicz, G. (2022). MOF-Based Sorbents Used for the Removal of Hg2+ from Aqueous Solutions via a Sorption-Assisted Microfiltration. Membranes (basel), 12, 1280.

    Article  CAS  Google Scholar 

  • Peng, H., Chen, R., Tao, N., Xiao, Y., Li, C., Zhang, T., & Ye, M. (2022). MoS2 boosts the Fe2+/PMS process for carbamazepine degradation. Environmental Science and Pollution Research, 29, 49267–49278.

    Article  CAS  Google Scholar 

  • Qian, Y., Liu, X., Li, K., Gao, P., Chen, J., Liu, Z., Zhou, X., Zhang, Y., Chen, H., & Li, X. (2020). Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process. Chemical Engineering Journal, 384, 123332.

    Article  CAS  Google Scholar 

  • Ramachandran, R., Sakthivel, T., Li, M., Shan, H., Xu, Z.-X., & Wang, F. (2021). Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator. Chemosphere, 271, 128509.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Feng, M. (2019). Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. Journal of Hazardous Materials, 372, 3–16.

    Article  CAS  Google Scholar 

  • Stanley, P. M., Sixt, F., & Warnan, J. (2023). Decoupled solar energy storage and dark photocatalysis in a 3D metal-organic framework. Advanced Materials, 35, e2207280.

    Article  Google Scholar 

  • Sturluson, A., Huynh, M. T., Kaija, A. R., Laird, C., Yoon, S., Hou, F., Feng, Z., Wilmer, C. E., Colon, Y. J., Chung, Y. G., Siderius, D. W., & Simon, C. M. (2019). The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 45, 1082–1121.

    Article  CAS  Google Scholar 

  • Tang, L., Liu, Y., Wang, J., Zeng, G., Deng, Y., Dong, H., Feng, H., Wang, J., & Peng, B. (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Applied Catalysis b: Environmental, 231, 1–10.

    Article  CAS  Google Scholar 

  • Terzopoulou, A., Wang, X., Chen, X. Z., Palacios-Corella, M., Pujante, C., Herrero-Martin, J., Qin, X. H., Sort, J., deMello, A. J., Nelson, B. J., Puigmarti-Luis, J., & Pane, S. (2020). Biodegradable metal-organic framework-based microrobots (MOFBOTs). Advanced Healthcare Materials, 9, e2001031.

    Article  Google Scholar 

  • Tourabi, M., Nohair, K., Traisnel, M., Jama, C., & Bentiss, F. (2013). Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis (2-thienylmethyl)-4-amino-1, 2, 4-triazole. Corrosion Science, 75, 123–133.

    Article  CAS  Google Scholar 

  • Wang, H.-L., Feng, Y.-F., Liang, N., Li, B.-L., & Li, H.-Y. (2010). A (3, 4)-connected two-dimensional copper coordination polymer with a 2D→ 3D polycatenation network. Journal of Molecular Structure, 964, 5–8.

    Article  CAS  Google Scholar 

  • Wang, J., Li, B., Li, Y., Fan, X., Zhang, F., Zhang, G., Zhu, Y., & Peng, W. (2021a). Easily Regenerated CuO/gamma-Al2O3 for Persulfate-Based Catalytic Oxidation: Insights into the Deactivation and Regeneration Mechanism. ACS Applied Materials & Interfaces, 13, 2630–2641.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, M., Zhou, R., Li, J., Zhao, W., & Chen, W. (2021b). Trace Cu(II) can enhance the degradation of Orange II in Fe(II)/hydroxylamine/persulfate system. Journal of Environmental Chemical Engineering, 9, 104907.

    Article  CAS  Google Scholar 

  • Wang, Z., Wang, H., Wang, Z., Huang, D., Qin, H., He, Y., Chen, M., Zeng, G., & Xu, P. (2021c). Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 626, 104907.

    Article  Google Scholar 

  • Wang, Q., Li, J., Li, R., Pan, X., Dong, F., & Wu, X. (2023). Rapid elimination of butralin residues on tobacco, in water and soils by newly isolated Bacillus sp. LY05. Journal of Environmental Chemical Engineering, 11, 109213.

    Article  CAS  Google Scholar 

  • Wu, Q., Siddique, M. S., Guo, Y., Wu, M., Yang, Y., & Yang, H. (2021). Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-Fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Applied Catalysis b: Environmental, 286, 119950.

    Article  CAS  Google Scholar 

  • Wu, Z., Tong, Z., Xie, Y., Sun, H., Gong, X., Qin, P., Liang, Y., Yuan, X., Zou, D., & Jiang, L. (2022). Efficient degradation of tetracycline by persulfate activation with Fe, Co and O co−doped g−C3N4: Performance, mechanism and toxicity. Chemical Engineering Journal, 434, 134732.

    Article  CAS  Google Scholar 

  • Xi, G., Chen, S., Zhang, X., Xing, Y., & He, Z. (2023). Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. Environmental Science and Pollution Research, 30, 13197–13209.

    Article  CAS  Google Scholar 

  • Xing, S., Li, W., Liu, B., Wu, Y., & Gao, Y. (2020). Removal of ciprofloxacin by persulfate activation with CuO: A pH-dependent mechanism. Chemical Engineering Journal, 382, 12287.

    Article  Google Scholar 

  • Yang, G., Liang, Y., Xiong, Z., Yang, J., Wang, K., & Zeng, Z. (2021a). Molten salt-assisted synthesis of Ce4O7/Bi4MoO9 heterojunction photocatalysts for Photo-Fenton degradation of tetracycline: Enhanced mechanism, degradation pathway and products toxicity assessment. Chemical Engineering Journal, 425, 130689.

    Article  CAS  Google Scholar 

  • Yang, Z., Xia, X., Shao, L., Wang, L., & Liu, Y. (2021b). Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Chemical Engineering Journal, 410, 128454.

    Article  CAS  Google Scholar 

  • Yang, Y., Ji, W., Li, X., Lin, H., Chen, H., Bi, F., Zheng, Z., Xu, J., & Zhang, X. (2022). Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0. Journal of Hazardous Materials, 424, 127640.

    Article  CAS  Google Scholar 

  • Zeng, H., Deng, L., Yang, K., Huang, B., Zhang, H., Shi, Z., & Zhang, W. (2021). Degradation of sulfamethoxazole using peroxymonosulfate activated by self-sacrificed synthesized CoAl-LDH@CoFe-PBA nanosheet: Reactive oxygen species generation routes at acidic and alkaline pH. Separation and Purification Technology, 268, 118654.

    Article  CAS  Google Scholar 

  • Zhai, G., Liu, Y., Lei, L., Wang, J., Wang, Z., Zheng, Z., Wang, P., Cheng, H., Dai, Y., & Huang, B. (2021). Light-promoted CO2 Conversion from epoxides to cyclic carbonates at ambient conditions over a bi-based metal-organic framework. ACS Catalysis, 11, 1988–1994.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhou, J., Chen, X., Wang, L., & Cai, W. (2019). Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chemical Engineering Journal, 369, 745–757.

    Article  CAS  Google Scholar 

  • Zhang, Z.-Y., Zhang, G.-D., Sheng, X.-X., Ding, Q.-W., Bai, Y.-Z., Su, Y., Liu, H.-K., & Su, Z. (2020). Efficient MO dye degradation catalyst of Cu(I)-based coordination complex from dissolution-recrystallization structural transformation. Crystal Growth & Design, 21, 333–343.

    Article  Google Scholar 

  • Zhang, Y., Wei, J., Xing, L., Li, J., Xu, M., Pan, G., & Li, J. (2022). Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Separation and Purification Technology, 282, 120124.

    Article  CAS  Google Scholar 

  • Zhou, C., Yuan, B., Zhang, S., Yang, G., Lu, L., Li, H., & Tao, C. A. (2022). Ultrafast degradation and high adsorption capability of a sulfur mustard simulant under ambient conditions using granular UiO-66-NH2 metal-organic gels. ACS Applied Materials & Interfaces, 14, 23383–23391.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Special Research Fund of Institute of Ecological Environment Carbon Neutrality, Suzhou University of Science and Technology (No.Zd2301), Fund of Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment (XTCXSZ2023-1).

Author information

Authors and Affiliations

Authors

Contributions

Yufeng Ji and Zhuyou Zhou collected the experimental data. Rui Zhou and Yong Wang co-wrote and revised the manuscript. Congyang Zou conceptualized the project methodology, wrote the original draft, revised the manuscript, and supervised the investigation.

Corresponding author

Correspondence to Congyang Zou.

Ethics declarations

Ethical Approval

Not applicable in this work.

Consent to Participate

Not applicable.

Consent to Publish

All authors read and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2427 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Zou, C., Wang, Y. et al. Insights into the Degradation and Mechanism of the Enhanced Persulfate Degradation of Tetracycline using an Efficient 3D Copper Metal–Organic Frameworks. Water Air Soil Pollut 235, 295 (2024). https://doi.org/10.1007/s11270-024-07097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07097-2

Keywords

Navigation