Skip to main content

Advertisement

Log in

Distribution Characteristics, Source Analysis of Heavy Metal(oid)s, and Ecological and Health Risk Assessment around Shale Gas Extraction Platform in Sichuan, China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Studies on the assessment of heavy metal(oid) contamination in soils near shale gas development areas are scarce. Studying the distribution characteristics of heavy metal(oid)s in the soil of shale gas extraction areas, evaluating ecological risks and health risks, and analyzing the sources of heavy metal(oid)s are important for environmental protection and public health in the shale gas development process. Forty-six surface soil samples were collected from a platform in the Shale Gas Development Zone, Sichuan Province, China, and analyzed for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn by inductively coupled plasma mass spectrometry and atomic fluorescence spectrometry. The results showed that the average concentration of As exceeded the screening value of China’s agricultural soil environmental quality standard, and the content of all heavy metal(oid)s except Hg was higher than the background value. As and Cd had Nemerow indices of 3.25 and 6.62, respectively, and their mean Geo-accumulation indices were 0.38 and 0.52 each, both of which were noticeably greater than the contamination levels of other heavy metal(oid)s. It indicates that As and Cd contamination existed in the soil and the contamination was concentrated in the south of the study area. The results of the potential ecological risk evaluation indicated the existence of an ecological threat of Cd. There is no adult or child carcinogenic risk in the study area, but the non-carcinogenic hazard index for children is 2.71, posing a non-carcinogenic health risk to children (HI > 1), with As as the main risk factor. CV, Pearson correlation analysis, and PCA analysis indicate that As is mainly influenced by natural factors and may also originate from deep well strata during shale gas drilling. Cd is mainly derived from anthropogenic sources such as agricultural activities and shale gas development activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data presented in this study are available upon request from the corresponding author.

References

  • Ahmed, R. S., Abuarab, M. E., Ibrahim, M. M., Baioumy, M., & Mokhtar, A. (2023). Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. Chemosphere, 137872. https://doi.org/10.1016/j.chemosphere.2023.137872

  • Ali, Y. A., Varvani, J., & Zare, R. (2021). Assessment and zoning of environmental hazard of heavy metals using the nemerow integrated pollution index in the vineyards of malayer city. Acta Geophysica, 1, 149–159. https://doi.org/10.1007/s11600-020-00514-0

    Article  Google Scholar 

  • Ali, L., Ali, S., Khattak, S. A., Janjuhah, H. T., Kontakiotis, G., Hussain, R., Rukh, S., Shah, M. T., Bathrellos, G. D., & Skilodimou, H. D. (2023). Distribution, risk assessment and source identification of potentially toxic elements in coal mining contaminated soils of Makarwal, Pakistan: Environmental and human health outcomes. Land, 821. https://doi.org/10.3390/land12040821 (No.821)

  • Aliyu, A. A., Mudansiru, A., Obadiah, C. D., & Dharmendra, S. (2023). Accumulation of heavy metals in autochthonous plants around Bagega artisanal gold mining village and the remediation potential of selected plants. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2023.02.005

    Article  Google Scholar 

  • Alvarenga, P., Palma, P., De Varennes, A., & Cunha-Queda, A. C. (2012). A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): Chemical, microbial and ecotoxicological indicators. Environmental Pollution, 50–56. https://doi.org/10.1016/j.envpol.2011.09.044

  • Anyanwu, B. O., & Chris, D. I. (2023). Human health hazard implications of heavy metals concentration in swimming crab (Callinectes amnicola) from polluted creeks in rivers state, Nigeria. Case Studies in Chemical and Environmental Engineering, 100325. https://doi.org/10.1016/j.cscee.2023.100325

  • Baghdady, A., Awad, S., & Gad, A. (2018). Assessment of metal contamination and natural radiation hazards in different soil types near iron ore mines, Bahariya oasis, Egypt. Arabian Journal of Geosciences, 17, 506. https://doi.org/10.1007/s12517-018-3814-x

  • Bezerra, M. F., de Alencar Goyanna, F. A., & Lacerda, L. D. (2023). Risk assessment of human Hg exposure through consumption of fishery products in Ceará State, Northeastern Brazil. Marine Pollution Bulletin, 114713. https://doi.org/10.1016/j.marpolbul.2023.114713

  • Bibi, D., Tőzsér, D., Sipos, B., Tóthmérész, B., & Simon, E. (2023) Heavy metal pollution of soil in Vienna, Austria. Water, Air, & Soil Pollution, 234(4). https://doi.org/10.1007/s11270-023-06244-5

  • Bozdogan Sert, E., Turkmen, M., & Cetin, M. (2019). Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun highway (Hatay, Turkey). Environmental Monitoring & Assessment, 9, 553. https://doi.org/10.1007/s10661-019-7714-7

    Article  CAS  Google Scholar 

  • Cesur, A., Cetin, I. Z., Aisha, A. E. S. A., Alrabiti, O. B. M., Aljama, A. M. O., Jawed, A. A., Cetin, M., Sevik, H., & Ozel, H. B. (2021). The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environmental Science and Pollution Research, 27, 35642–35648. https://doi.org/10.1007/s11356-021-13166-4

    Article  CAS  Google Scholar 

  • Cesur, A., Cetin, I. Z., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, Air, & Soil Pollution, 6, 1–9. https://doi.org/10.1007/s11270-022-05667-w

    Article  CAS  Google Scholar 

  • Cetin, M., & Abo Aisha, A. E. S. (2023). Variation of al concentrations depending on the growing environment in some indoor plants that used in architectural designs. Environmental Science and Pollution Research International, 7, 18748–18754. https://doi.org/10.1007/s11356-022-23434-6

    Article  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Cetin, I. Z. (2022a). Using topsoil analysis to determine and map changes in ni Co pollution. Water, Air, & Soil Pollution, 8, 1–11. https://doi.org/10.1007/s11270-022-05762-y

    Article  CAS  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022b). Determination and mapping of regional change of Pb and Cr pollution in Ankara City center. Water, Air & Soil Pollution, 5, 1–10. https://doi.org/10.1007/s11270-022-05638-1

    Article  CAS  Google Scholar 

  • Cetin, M., Pekkan, O. I., Ozturk, G. B., Kurkcuoglu, M. A. S., Kucukpehlivan, T., & Cabuk, A. (2022c). Examination of the change in the vegetation around the kirka boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 7, 1–15. https://doi.org/10.1007/s11270-022-05738-y

    Article  CAS  Google Scholar 

  • Chen, X., Yang, Y., Lu, Z., Chen, K., Li, Y., Huang, X., & Wang, X. (2022a). Oil-based drilling cuttings pyrolysis residues at a typical shale gas drilling field in chongqing: Pollution characteristics and environmental risk assessment. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01388-5

    Article  Google Scholar 

  • Chen, Y., Shi, Q., Qu, J., He, M., & Liu, Q. (2022b). A pollution risk assessment and source analysis of heavy metals in sediments: A case study of Lake Gehu. China. Chinese Journal of Analytical Chemistry, 5, 100077. https://doi.org/10.1016/j.cjac.2022.100077

    Article  Google Scholar 

  • Chen, X., Yang, Y., & Lu, Z. (2023b). Oil-based drilling cuttings pyrolysis residues at a typical shale gas drilling field in Chongqing: Pollution characteristics and environmental risk assessment. Environmental Geochemistry and Health, 6, 2949–2962. https://doi.org/10.1007/s10653-022-01388-5

    Article  CAS  Google Scholar 

  • Chen, X., Liu, S., & Luo, Y. (2023a). Spatiotemporal distribution and probabilistic health risk assessment of arsenic in drinking water and wheat in Northwest China. Ecotoxicology and Environmental Safety, 114880. https://doi.org/10.1016/j.ecoenv.2023.114880

  • Chu, X., Jin, Y., & Chu, Z. (2022). Quantitative evaluation of heavy metal pollution hazards in leachate during fermentation before municipal solid waste incineration. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.130200

    Article  Google Scholar 

  • Crispo, M., Dobson, M. C., Blevins, R. S., Meredith, W., Lake, J. A., & Edmondson, J. L. (2021). Heavy metals and metalloids concentrations across UK urban horticultural soils and the factors influencing their bioavailability to food crops. Environmental Pollution, 117960. https://doi.org/10.1016/j.envpol.2021.117960

  • Cui, H., Zhao, Y., & Hu, K. (2024) Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. The Science of the Total Environment, 170082. https://doi.org/10.1016/j.scitotenv.2024.170082

  • Din, I. U., Muhammad, S., Faisal, S., Rehman, I. U., & Ali, W. (2024). Heavy metal(loid)s contamination and ecotoxicological hazards in coal, dust, and soil adjacent to coal mining operations, northwest Pakistan. Journal of Geochemical Exploration, 107332. https://doi.org/10.1016/j.gexplo.2023.107332

  • do Nascimento, C. W. A., Lima, L. H. V., da Silva, F. L., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring & Assessment, 10, 1. https://doi.org/10.1007/s10661-018-6989-4

  • Dong, Z., Cui, K., Liang, J., Guan, S., Fang, L., Ding, R., Wang, J., Li, T., Zhao, S., & Wang, Z. (2023). The widespread presence of triazole fungicides in greenhouse soils in Shandong province, China: A systematic study on human health and ecological risk assessments. Environmental Pollution, 121637. https://doi.org/10.1016/j.envpol.2023.121637

  • Duan, J. X., Liang, B., Li, Z. H., Xu, Z. Q., & Wang, Y. T. (2020). Pollution characteristics and source analysis of heavy metals in acidified soil in Xingwen Area South Sichuan. Sichuan Environment, 39(04), 129–135. https://doi.org/10.14034/j.cnki.schj.2020.04.020

    Article  Google Scholar 

  • El-Alfy, M. A. (2023). Ecological and human risk assessment of heavy metals at Abu-qir coastline of Mediterranean sea in Egypt using GIS. Acta Ecologica Sinica, 5, 907–924. https://doi.org/10.1016/j.chnaes.2023.02.001

    Article  Google Scholar 

  • Evans, G. W., & Kantrowitz, E. (2002). Socioeconomic status and health: The potential role of environmental risk exposure. Annual Review of Public Health, 1, 303–331. https://doi.org/10.1146/annurev.publhealth.23.112001.112349

    Article  Google Scholar 

  • Faraji, M., Alizadeh, I., Conti, G. O. & Mohammadi, A. (2022) Investigation of health and ecological risk attributed to the soil heavy metals in Iran: Systematic review and meta-analysis. Science of the Total Environment, 158925. https://doi.org/10.1016/j.scitotenv.2022.158925 (Part 1)

  • Fernando Montaño-López, A. B. (2021). Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph. Canada. Scientific Reports, 1, 11286. https://doi.org/10.1038/s41598-021-90368-3

    Article  CAS  Google Scholar 

  • Foster, S., & Chilton, J. (2021) Policy experience with groundwater protection from diffuse pollution – A review. Current Opinion in Environmental Science & Health, 100288. https://doi.org/10.1016/j.coesh.2021.100288

  • Gao, B. (2016). Geochemical characteristics and geological significance of shale gas from the lower Silurian longmaxi formation in Sichuan Basin, China. Journal of Natural Gas Geoscience, 2, 119–129. https://doi.org/10.1016/j.jnggs.2016.03.002

    Article  Google Scholar 

  • Gong, C., Wang, S., Wang, D., Lu, H., Dong, H., Liu, J., Yan, B., & Wang, L. (2022). Ecological and human health risk assessment of heavy metal(loid)s in agricultural soil in hotbed chives hometown of Tangchang, Southwest China. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11397-0

  • Gui, H., Yang, Q., Lu, X., Wang, H., Gu, Q., & Martín, J.D. (2023) Spatial distribution, contamination characteristics and ecological-health risk assessment of toxic heavy metals in soils near a smelting area. Environmental Research, 115328. https://doi.org/10.1016/j.envres.2023.115328

  • Gummadi, S., Latha, G. S., Vijayakumar, G., Rao, P., & Venkatarathnamma, V. (2015). Application of Nemerow’s pollution index (NPI) for groundwater quality assessment of Bapatla Mandal west region, coastal Andhra Pradesh, India. International Journal of Applied Science and Engineering Research, 4, 500–506.

  • Guo, S., Chen, X., Wei, W., Li, T., Yin, F., & Xu, L. (2023). Risk assessment and source analysis of heavy metal contamination in the soil of the Juanshui river mouth. Environmental Pollutants and Bioavailability, 1, 2212127. https://doi.org/10.1080/26395940.2023.2212127

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control A sedimentological approach. Water Research, 8, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hegade, R. R., Chethanakumara, M. V., & Krishnamurthy, S. V. B. (2024). Effect of cultivation practice on the heavy metal content of rice paddy field soil in western ghats of India. Environmental Earth Sciences 1. https://doi.org/10.1007/s12665-023-11317-z

  • Hu, J., Zhang, L., Wang, Q., & Tian, B. (2018). An assessment methodology for human holistic risk in whole cycle of shale gas fracturing. Human and Ecological Risk Assessment, 24(1), 271–290. https://doi.org/10.1080/10807039.2017.1380512

    Article  CAS  Google Scholar 

  • Hu, H., Tian, G., Wu, Z., & Xia, Q. (2023a). Cross-regional ecological compensation under the composite index of water quality and quantity: A case study of the Yellow River basin. Environmental Research, 117152. https://doi.org/10.1016/j.envres.2023.117152 (Part 1)

  • Hu, N., Yu, H., Deng, B., Hu, B., Zhu, G., Yang, X., Wang, T., Zeng, Y., & Wang, Q. (2023b). Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. Ecotoxicology and Environmental Safety, 115037. https://doi.org/10.1016/j.ecoenv.2023.115037

  • Huina, Z., Liangbo, Z., Hailiang, Z., Baozhong, Z., Hanyu, C., & Fan, S. (2020) Ecological risk assessment of heavy metals in road dust based on improved potential ecological risk index: A case study in Zhengzhou, China. E3S Web of Conferences, 4042. https://doi.org/10.1051/e3sconf/202019404042

  • Jahandari, A., & Abbasnejad, B. (2024). Environmental pollution status and health risk assessment of selective heavy metal(oid)s in Iran’s agricultural soils: A review. Journal of Geochemical Exploration, 107330. https://doi.org/10.1016/j.gexplo.2023.107330

  • Jones, D. H., Yu, X., Guo, Q., Duan, X., & Jia, C. (2022). Racial disparities in the heavy metal contamination of urban soil in the southeastern United States. International Journal of Environmental Research and Public Health, 3, 1105. https://doi.org/10.3390/ijerph19031105

    Article  CAS  Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007

    Article  CAS  Google Scholar 

  • Khan, K., Mohsin, A., Sharif, H. M. A., Maryam, A., Ali, J., Li, X., Ibrahim, S. M., Ayaz, M., Zhou, Y., & Younas, M. (2022). Heavy metal pollution in the soil of a riverine basin: Distribution, source, and potential hazards. Environmental Monitoring and Assessment, 9, 618. https://doi.org/10.1007/s10661-022-10287-2

    Article  CAS  Google Scholar 

  • Kou, J., Gan, Y., Lei, S., Meng, W., Feng, C., & Xiao, H. (2022). Soil health and ecological risk assessment in the typical coal mines on the Mongolian Plateau. Ecological Indicators, 142, 109189. https://doi.org/10.1016/j.ecolind.2022.109189

    Article  CAS  Google Scholar 

  • Krupnick, A., Wang, Z., & Wang, Y. (2014). Environmental risks of shale gas development in China. Energy Policy, 117–125. https://doi.org/10.1016/j.enpol.2014.07.022

  • Kumar, V., Pandita, S., & Setia, R. (2022). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research, 487–501. https://doi.org/10.1016/j.gr.2021.10.028

  • Kumi, Michael, Anku, Wilson, W., Antwi, Yeboah, B., Penny, & Govender, P. (2023). Evaluation of the suitability of integrated bone char- and biochar-treated groundwater for drinking using single-factor, nemerow, and heavy metal pollution indexes. Environmental Monitoring and Assessment, 6, 647. https://doi.org/10.1007/s10661-023-11249-y

    Article  CAS  Google Scholar 

  • Kyere, V. N., Greve, K., Atiemo, S. M., Amoako, D., Aboh, I. K., & Cheabu, B. S. (2019). Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana. Emerging Science Journal, 6, 428–436. https://doi.org/10.28991/esj-2018-01162

    Article  Google Scholar 

  • Lanjwani, M. F., Khuhawar, M. Y., Tuzen, M., Samtio, M. S., & Lanjwani, A. H. (2023). GIS-based spatial variability of cod and heavy metals owing to Larkana city sewage drained into the rice canal, Sindh, Pakistan. Arabian Journal of Geosciences 7. https://doi.org/10.1007/s12517-023-11502-1

  • Li, Y., Tian, D. M., Lai, X., Meng, X. X., Yuan, L., Xu, Y., Xu, M., & Wu, J. (2019). Characteristics of heavy metal content and ecological risk assessment of soil in shale gas field area. Journal of Sichuan Agricultural Universit, 37(05), 695–701. https://doi.org/10.19826/j.cnki.1009-3850.2020.10007

    Article  CAS  Google Scholar 

  • Li, S., Zhou, Z., Nie, H., Zhang, L., Song, T., Liu, W., Li, H., Xu, Q., Wei, S., & Tao, S. (2022b). Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China. China Geology, 1, 110–135. https://doi.org/10.1016/S2096-5192(22)00090-8

  • Li, D., Liu, W., Zheng, G., Du, X., Zheng, J., Chen, H., Wu, Q., & Guo, Y. (2022a). Assessing the quality of the soil around a shale gas development site in a subtropical karst region in Southwest China. Science of the Total Environment, 154730. https://doi.org/10.1016/j.scitotenv.2022.154730 (No.0)

  • Li, Y., Li, C., Xin, Y., Huang, T. & Liu, J. (2022c) Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicology and Environmental Safety, 114129. https://doi.org/10.1016/j.ecoenv.2022.114129

  • Li, W., Zhang, S., Gao, F., Chen, Z., & Jiang, J. (2024) Spatial distribution, sources apportionment and risk assessment of heavy metals in the Changchun Black Soil Area, China. Journal of Hazardous Materials Advances, 100402. https://doi.org/10.1016/j.hazadv.2024.100402

  • Liang, J., Liu, Z., Tian, Y., Shi, H., Fei, Y., Qi, J., Mo, L. (2022). Research on health risk assessment of heavy metals in soil based on multi-factor source apportionment: A case study in Guangdong Province, China. The Science of the Total Environment, 159991. https://doi.org/10.1016/j.scitotenv.2022.159991 (Part 3)

  • Lin, Y., Wang, J., & Lin, C. (2022). Vertical changes in the geochemical distributions of iron, manganese and heavy metals in wetland soil cores from cold temperate zones in Northeastern China. Journal of Hazardous Materials Advances, 100085. https://doi.org/10.1016/j.hazadv.2022.100085

  • Liu, Z. H., Meng, R. H., Dai, H. X., Hong, Q. Y., Yan, Q. H., Liu, Y. T., Wang, H. T., & Chen, T. (2019). Evaluation of heavy metals pollution in surface sediments using an improved geo-accumulation index method(article). Journal of Agro-Environment Science, 9, 2157–2164. https://doi.org/10.11654/jaes.2019-0140

    Article  Google Scholar 

  • Liu, K., Lv, J., He, W., Zhang, H., Cao, Y., Dai, Y. (2015). Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicology and Environmental Safety, 207–213. https://doi.org/10.1016/j.ecoenv.2014.12.005

  • Liu, Q., Du, B., He, L., Zeng, Y., Tian, Y., Zhang, Z., Wang, R., & Shi, T. (2023). Digital soil mapping of heavy metals using multiple geospatial data: Feature identification and deep neural network. Ecological Indicators, 110863. https://doi.org/10.1016/j.ecolind.2023.110863

  • Lv, J. L. J. (2019). Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 72–83. https://doi.org/10.1016/j.envpol.2018.09.147

  • Ma, T., Luo, H., Huang, K., Tao, X., Sun, J., & Lu, G. (2022). Hierarchical health risk assessment and influence factors of an ecological post-restoration oil shale mining area based on metal bioavailability. Science of the Total Environment, 821, 153480. https://doi.org/10.1016/j.scitotenv.2022.153480

    Article  CAS  Google Scholar 

  • Ma, Y., Li, Y., & Fang, T. (2023). Analysis of driving factors of spatial distribution of heavy metals in soil of non-ferrous metal smelting sites: Screening the geodetector calculation results combined with correlation analysis. Journal of Hazardous Materials , 130614. https://doi.org/10.1016/j.jhazmat.2022.130614 (No.0)

  • Maloney, K. O., Young, J. A., Faulkner, S. P., Hailegiorgis, A., Slonecker, E. T., & Milheim, L. E. (2018). A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A. Science of the Total Environment, 1, 154–166. https://doi.org/10.1016/j.scitotenv.2017.07.247

    Article  CAS  Google Scholar 

  • Mamut, A., Eziz, M., Mohammad, A., & Anayit, M (2017). The spatial distribution, contamination, and ecological risk assessment of heavy metals of farmland soils in Karashahar – Baghrash Oasis, Northwest China. Human and Ecological Risk Assessment: An International. https://doi.org/10.1080/10807039.2017.1305263

  • Matthews-Amune, C. O., & Kakulu, S. (2013). Effect of mining on heavy metal concentration in soils from the vicinity of Itakpe Iron ore mine in Kogi State, Nigeria. Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences, 56(2), 100–106.

    CAS  Google Scholar 

  • Meng, D., Shao, Y., Luo, M., Liu, Z., Xu, D., & Ma, L. (2023). Risk assessment and source analysis of soil heavy metal(oid)s pollution in Beijing, China. Water, Air, & Soil Pollution 9. https://doi.org/10.1007/s11270-023-06573-5

  • Moeinzadeh, H., Jegakumaran, P., Yong, K., & Withana, A. (2023). Efficient water quality prediction by synthesizing seven heavy metal parameters using deep neural network. Journal of Water Process Engineering, 104349. https://doi.org/10.1016/j.jwpe.2023.104349

  • Mostafa, M. T., El-Nady, H., Gomaa, R. M., Abdelgawad, H. F., Abdelhafiz, M. A., Salman, S. A. E., & Khalifa, I. H. (2024). Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: Enrichment, sources, contamination, and health risks. Environmental Earth Sciences 1. https://doi.org/10.1007/s12665-023-11342-y

  • Nezat, C. A., Hatch, S. A., & Uecker, T. (2017). Heavy metal content in urban residential and park soils: A case study in Spokane, Washington, USA. Applied Geochemistry, 78, 186–193. https://doi.org/10.1016/j.apgeochem.2016.12.018

    Article  CAS  Google Scholar 

  • Ni, Y., Yao, L., Sui, J., & Chen, J. (2022). Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback/produced water. Journal of Natural Gas Geoscience, 1, 1–13. https://doi.org/10.1016/j.jnggs.2022.03.001

    Article  Google Scholar 

  • Nie, H., Jin, Z., Li, P., Katz, B. J., Dang, W., Liu, Q., Ding, J., Jiang, S., & Li, D. (2023). Deep shale gas in the ordovician-silurian wufeng–longmaxi formations of the Sichuan Basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies. Journal of Asian Earth Sciences, 105521. https://doi.org/10.1016/j.jseaes.2022.105521

  • Obiri-Nyarko, F., Duah, A. A., Karikari, A. Y., Agyekum, W. A., Manu, E., & Tagoe, R. (2021). Assessment of heavy metal contamination in soils at the kpone landfill site, ghana: Implication for ecological and health risk assessment. Chemosphere, 282, 131007. https://doi.org/10.1016/j.chemosphere.2021.131007

    Article  CAS  Google Scholar 

  • Ogundele, L. T., Oluwajana, O. A., Ogunyele, A. C., & Inuyomi, S. O. (2021). Heavy metals, radionuclides activity and mineralogy of soil samples from an artisanal gold mining site in Ile-ife, Nigeria: Implications on human and environmental health. Environmental Earth Sciences, 5, 201–202. https://doi.org/10.1007/s12665-021-09494-w

    Article  CAS  Google Scholar 

  • Ozel, H. U., Gemici, B. T., Gemici, E., Ozel, H. B., Cetin, M., & Sevik, H. (2020). Application of artificial neural networks to predict the heavy metal contamination in the Bartin river. Environmental Science and Pollution Research, 34, 42495–42512. https://doi.org/10.1007/s11356-020-10156-w

    Article  CAS  Google Scholar 

  • Özşeker, K., Erüz, C., & Terzi, Y. (2022). Spatial distribution and ecological risk evaluation of toxic metals in the southern black sea coastal sediments. Marine Pollution Bulletin, 114020. https://doi.org/10.1016/j.marpolbul.2022.114020

  • Ren, H., Deng, Y., & Zhao, D. (2024). Structures and diversities of bacterial communities in oil-contaminated soil at shale gas well site assessed by high-throughput sequencing. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-023-31344-4

  • Rivard, C., Bordeleau, G., Lavoie, D., Lefebvre, R., Ladevèze, P., Duchesne, M. J., Séjourné, S., Crow, H., Pinet, N., Brake, V., Bouchedda, A., Gloaguen, E., Ahad, J. M. E., Malet, X., Aznar, J. C., & Malo, M. (2019). Assessing potential impacts of shale gas development on shallow aquifers through upward fluid migration: A multi-disciplinary approach applied to the Utica shale in eastern Canada. Marine and Petroleum Geology, 100, 466–483. https://doi.org/10.1016/j.marpetgeo.2018.11.004

    Article  CAS  Google Scholar 

  • Roy, A. A., Adams, P. J., & Robinson, A. L. (2014) Air pollutant emissions from the development, production, and processing of Marcellus shale natural gas. Journal of the Air & Waste Management Association, 64(1), 19–37. https://doi.org/10.1080/10962247.2013.826151

  • Saleh, A., Dawood, Y. H., & Gad, A. (2022). Assessment of potentially toxic elements’ contamination in the soil of Greater Cairo, Egypt using geochemical and magnetic attributes. Land, 3, 319. https://doi.org/10.3390/land11030319

    Article  Google Scholar 

  • Shen, G., Ru, X., Gu, Y., Liu, W., Wang, K., Li, B., Guo, Y., & Han, J. (2023). Pollution characteristics, spatial distribution, and evaluation of heavy metal(loid)s in farmland soils in a typical mountainous hilly area in China. Foods (Basel, Switzerland), 3, 681. https://doi.org/10.3390/foods12030681

    Article  CAS  Google Scholar 

  • Shen, X. L., Yang, J. Z., Xu, Y. T., & Yang, Y. F. (2017). Research on pollution characteristic of water-based drilling cuttings of typical oil-gas fields. Environmental Pollution & Control, 480–483. https://doi.org/10.15985/j.cnki.1001-3865.2017.05.004 (第5期)

  • Shi, T., He, L., Wang, R., Li, Z., Hu, Z., & Wu, G. (2023). Digital mapping of heavy metals in urban soils: A review and research challenges. Catena, 107183. https://doi.org/10.1016/j.catena.2023.107183

  • Sidhu, N., Kaur, L., Rishi, M. S., Din, S. N. U., Tewari, K., & Singh, P. (2024). Integrating multivariate hydrogeochemical analysis with human health risk assessment: An inverse geochemical and statistical modeling approach. Journal of Geochemical Exploration, 107389. https://doi.org/10.1016/j.gexplo.2024.107389

  • Singh, S., Maiti, S. K., & Raj, D. (2023). An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through pmf model. Environmental Monitoring and Assessment, 2, 306. https://doi.org/10.1007/s10661-023-10924-4

    Article  CAS  Google Scholar 

  • Sun, J., Zhao, M., Huang, J., Liu, Y., Wu, Y., Cai, B., Han, Z., Huang, H., Fan, Z. (2022). Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. Journal of Hazardous Materials, 127116. https://doi.org/10.1016/j.jhazmat.2021.127116 (Part A)

  • Tang, Q., Chang, L., Wang, Q., Miao, C., Zhang, Q., Zheng, L., Zhou, Z., Ji, Q., Chen, L., & Zhang, H. (2023). Distribution and accumulation of cadmium in soil under wheat-cultivation system and human health risk assessment in coal mining area of China. Ecotoxicology and Environmental Safety, 114688. https://doi.org/10.1016/j.ecoenv.2023.114688

  • Tong, K., Zhao, J., Liu, Q., Zhu, B., Jin, Q., Qu, T., Liu, Q., & Cong, S. (2022). Analysis and investigation of the leakage failure of a casing used in a shale gas well. Engineering Failure Analysis. https://doi.org/10.1016/j.engfailanal.2021.105891

    Article  Google Scholar 

  • Usepa (2001) Supplemental guidance for developing soil screening levels for superfund sites, Washington, DC, OSWER9355, pp 4–24

  • Wang, C. W. C., Lin, X. L. X., Zhang, C. Z. C., & Mei, X. M. X. (2017). Environmental security control of resource utilization of shale gas’ drilling cuttings containing heavy metals. Environmental Science & Pollution Research, 27, 21973–21983. https://doi.org/10.1007/s11356-017-9703-0

    Article  CAS  Google Scholar 

  • Wang, M., Yang, L., Li, J., & Liang, Q. (2023b). The evaluation and sources of heavy metal anomalies in the surface soil of eastern Tibet. Minerals, 1, 86. https://doi.org/10.1016/j.scitotenv.2023.163361

    Article  CAS  Google Scholar 

  • Wang, H. A. H. P., Lu, L. A. L. L., Chen, X. A. X. P., Bian, Y. A. Y. P., & Ren, Z. J. A. Z. (2019a). Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Research, 114942. https://doi.org/10.1016/j.watres.2019.114942

  • Wang, M. W. M., Han, Q. H. Q., Gui, C. G. C., Cao, J. C. J., Liu, Y. L. Y., He, X. H. X., & He, Y. H. Y. (2019b). Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan province, China. Science of the Total Environment, 1–10. https://doi.org/10.1016/j.scitotenv.2019.03.396

  • Wang, C., Zeng, F., Xu, C., & Xu, Q. (2023a) Anomalous enrichment of as and hg in underground coal dust: A case from Xishan Coalfield, Shanxi Province, North China. Acs Omega 15, 13884-13898. https://doi.org/10.1016/j.coal.2014.09.004

  • Wei, H., Weigang, H., Hualin, L., Wenjun, W., & Rui, J. (2023a) Water quality evaluation of Dahai lake in inner Mongolia based on improved Nemero pollution index method and principal component analysis. E3S Web of Conferences, 3040. https://doi.org/10.1051/e3sconf/202339303040

  • Wei, M., Pan, A., Ma, R., & Wang, H. (2023b). Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan county, Shaanxi Province. Process Safety and Environmental Protection, 225–237. https://doi.org/10.1016/j.psep.2022.12.089

  • Xie, H., Yang, X., Xu, J., & Zhong, D. (2023). Heavy metals pollution and potential ecological health risk assessment in the Yangtze River reaches. Journal of Environmental Chemical Engineering, 2, 109489. https://doi.org/10.1016/j.jece.2023.109489

    Article  CAS  Google Scholar 

  • Xu, T., Wang, L. A., Wang, X., Li, T., & Zhan, X. (2018). Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: A human health risk assessment for the workers. Ecotoxicology and Environmental Safety, 165, 160–163. https://doi.org/10.1016/j.ecoenv.2018.08.104

    Article  CAS  Google Scholar 

  • Xu, T., Wang, L., Li, T., & Zhan, X. (2019). Heavy metal pollution and ecological risk assessment of water-based drill cuttings produced in shale gas exploitation in Chongqing, China. Iop Conference Series: Earth and Environmental Science, 6, 62005. https://doi.org/10.1088/1755-1315/227/6/062005

    Article  Google Scholar 

  • Xu, B., Hu, J., Hu, T., Wang, F., Luo, K., Wang, Q., & He, X. (2021). Quantitative assessment of seismic risk in hydraulic fracturing areas based on rough set and Bayesian network: A case analysis of Changning shale gas development block in Yibin City, Sichuan Province, China. Journal of Petroleum Science and Engineering, 200, 108226. https://doi.org/10.1016/j.petrol.2020.108226

    Article  CAS  Google Scholar 

  • Xu, J., Li, Y., Wang, S., Long, S., Wu, Y., & Chen, Z. (2022). Sources, transfers and the fate of heavy metals in soil-wheat systems: The case of lead (pb)/zinc (zn) smelting region. Journal of Hazardous Materials, 129863. https://doi.org/10.1016/j.jhazmat.2022.129863

  • Xu, S., Li, C., Wang, Y., Wu, A., Gao, G., & Zang, F. (2024). Characteristics and evaluation of heavy metal pollution in a soil–wheat system of an arid oasis city in Northwest China. Ecotoxicology and Environmental Safety, 115958. https://doi.org/10.1016/j.ecoenv.2024.115958

  • Yan, F., Li, N., Wang, J., & Wu, H. (2023). Ecological footprint model of heavy metal pollution in water environment based on the potential ecological risk index. Journal of Environmental Management, 118708. https://doi.org/10.1016/j.jenvman.2023.118708

  • Yang, Q. Y. Q., Zhang, J. Z. J., Hou, Z. H. Z., Lei, X. L. X., Tai, W. T. W., Chen, W. C. W., & Chen, T. C. T. (2017). Shallow groundwater quality assessment: Use of the improved nemerow pollution index, wavelet transform and neural networks(article). Journal of Hydroinformatics, 5, 784–794. https://doi.org/10.2166/hydro.2017.224

    Article  Google Scholar 

  • Yiika, L. P., Jean-Lavenir, N. M., Suh, G. C., Nkemasong, J. A., Junior, E. E. M., Kehding, F. B., Sekem, S. G., & Djibril, K. N. G. (2024). Distribution, sources, and eco-toxicological assessment of potentially toxic metals in river sediments of Nkwen area (Cameroon Volcanic line). Water, Air, & Soil Pollution, 1,. https://doi.org/10.1007/s11270-023-06830-7

  • Young, J., Maloney, K. O., Slonecker, E. T., Milheim, L. E., & Siripoonsup, D. (2018). Canopy volume removal from oil and gas development activity in the upper Susquehanna river basin in Pennsylvania and New York (USA): An assessment using LIDAR data. Journal of Environmental Management, 66–75. https://doi.org/10.1016/j.jenvman.2018.05.041

  • Zaakour, F., Kholaiq, M., Khouchlaa, A., Mjiri, I. E., Rahimi, A., & Saber, N. (2023). Assessment of heavy metal contamination using pollution index, geo-accumulation index, and potential ecological risk index in agricultural soil – A case study in the coastal area of Doukkala (Morocco). Ecological Engineering & Environmental Technology, 2, 38–44. https://doi.org/10.12912/27197050/157037

    Article  Google Scholar 

  • Zeng, J., Tabelin, C. B., Gao, W., Tang, L., Luo, X., Ke, W., Jiang, J., & Xue, S. (2023). Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chemical Engineering Journal, 454, 140307. https://doi.org/10.1016/j.cej.2022.140307

    Article  CAS  Google Scholar 

  • Zeng, Q. Q., Wang, Y. H., Liu, C. Z., Zhao, J., & Lei, F. H. (2021). Study on chemical element distribution characteristics of soil in Nanbu county Sichuan Province. Sedimentary Geology and Tethyan Geology, 656–662. https://doi.org/10.19826/j.cnki.1009-3850.2020.10007 (第4期)

  • Zhang, Q., & Hah, G. (2022). Speciation characteristics and risk assessment of soil heavy metals from puding karst critical zone Guizhou Province. Environmental Science, 43(6), P3269–P3277. https://doi.org/10.13227/j.hjkx.202107233

    Article  Google Scholar 

  • Zhang, H., Lu, P., Zhang, D., Kou, S., Bao, K., Li, C., Wang, J., & Mao, Y. (2021a). Watershed-scale assessment of surface water-related risks from shale gas development in mountainous areas China. Journal of Environmental Management, 279, 111589. https://doi.org/10.1016/j.jenvman.2020.111589

    Article  Google Scholar 

  • Zhang, J., Yang, T., & Wang, N. (2024). Health risk assessment of heavy metals in wild fish and seasonal variation and source identification of heavy metals in sediments: A case study of typical urban river in Xi’an. China: Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-023-31693-0

    Book  Google Scholar 

  • Zhang, Q., Feng, M., & Hao, X. (2018). Application of Nemerow index method and integrated water quality index method in water quality assessment of Zhangze Reservoir. Iop Conference Series: Earth and Environmental Science, 12160. https://doi.org/10.1088/1755-1315/128/1/012160 (No.1)

  • Zhang, G., Zhao, F., Cheng, X., Huang, S., Zhang, C., Zhou, M., Mei, K., & Zhang, L. (2022a). Resource utilization from solid waste originated from oil-based shale drilling cutting during shale gas development. Chemosphere, 134318. https://doi.org/10.1016/j.chemosphere.2022.134318

  • Zhang, Z., Yu, N., Liu, D., & Zhang, Y. (2022b). Assessment and source analysis of heavy metal contamination in water and surface sediment in Dongping lake, China. Chemosphere, 136016. https://doi.org/10.1016/j.chemosphere.2022.136016 (Part 3)

  • Zhang, T., Wang, M., Bai, G., Liu, J., Li, P., Zhang, Y., & Xia, S. (2023). Distribution characteristics, risk assessment, and source analysis of heavy metals in surface sediments and near-lakeshore soils of a plateau lake in China. Gondwana Research, 191–200. https://doi.org/10.1016/j.gr.2022.10.005

  • Zhang, J. (2021b). Application of water quality evaluation in the Cotai city ecological reserve in Macau: Taking the single factor index evaluation method as an example. Iop Conference Series: Earth and Environmental Science 3, 32063. https://doi.org/10.1088/1755-1315/781/3/032063

  • Zhao, G., Ma, Y., Liu, Y., Cheng, J., & Wang, X. (2022). Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin county. Scientific Reports, 1, 1–17. https://doi.org/10.1038/s41598-022-13977-6

    Article  CAS  Google Scholar 

  • Zhao, Z., Liu, Q., Liao, Y., Yu, P., Tang, Y., Liu, Q., Shi, X., Shou, L., Zeng, J., Chen, Q., & Chen, J. (2023). Ecological risk assessment of trace metals in sediments and their effect on benthic organisms from the south coast of Zhejiang province, China. Marine Pollution Bulletin, 114529. https://doi.org/10.1016/j.marpolbul.2022.114529

  • Zhuo, H., Wang, X., Liu, H., Fu, S., Song, H., & Ren, L. (2020). Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China. Environmental Geochemistry and Health, 1, 135–146. https://doi.org/10.1007/s10653-019-00313-7

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the support from the study on the land use benefit of Sichuan Changning Natural Gas Development Company, China (20220621–23).

Author information

Authors and Affiliations

Authors

Contributions

Bing Wang: conceptualization, methodology, formal analysis, investigation, writing an original draft. Kefeng Li: date curation, formal analysis, conceptualization, methodology, writing – review and editing. Hong Ye: conceptualization, methodology, investigation, software, resources. Chunyang Gaoa: investigation, formal analysis. Wenhui Jin: conceptualization, project administration.

Corresponding author

Correspondence to Bing Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• First assessment of heavy metal(oid) pollution in the soil of shale gas development sites.

• As and Cd are the major elements contributing to high risk.

• As mainly originated from shale gas extraction and natural sources.

• Cd is mainly influenced by human activities in shale gas development.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, K., Ye, H. et al. Distribution Characteristics, Source Analysis of Heavy Metal(oid)s, and Ecological and Health Risk Assessment around Shale Gas Extraction Platform in Sichuan, China. Water Air Soil Pollut 235, 234 (2024). https://doi.org/10.1007/s11270-024-07029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07029-0

Keywords

Navigation