Skip to main content

Advertisement

Log in

The Impact of Moderate Thermophiles on the Production of Acid Mine Drainage and the Dissolution of Ni and Zn from Iron-Bearing Sulfide Minerals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A study was conducted to examine the impact of moderate thermophiles (Sulphobacillus thermosulphidooxidans, Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulphobacillus spp.) on four different sulfide minerals, namely pyrite, marcasite, pyrrhotite, and arsenopyrite. The study was conducted with and without the addition of iron(II) sulfate and sulfur, and the results were analyzed in terms of the dissolution of iron, nickel, and zinc. These elements play a crucial role in the formation of acid mine drainage (AMD). During the 30-day incubation period, marcasite showed the highest iron dissolution level, with the iron concentration reaching 18.81 g/L at a pH range of 1.4 to 1.6. The dissolution rates of nickel and zinc were found to be high at 87% and 74%, respectively. The addition of external iron(II) sulfate (FeSO4⋅7H2O) and sulfur (S) did not have any effect on the dissolution of nickel and zinc. It was observed that marcasite and pyrite with high iron dissolution had a higher potential for acid mine drainage (AMD) formation. On the other hand, pyrrhotite with low iron dissolution had a lower potential for AMD formation. Despite the presence of additives, arsenopyrite had little effect on AMD production. The formation of passivation layers such as ammoniojarosite and hydronium jarosite effectively suppresses the continuous extraction of iron from pyrrhotite and arsenopyrite. Based on the surface analysis of feeds and residues of samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), it was concluded that the surface structures had been partially disrupted due to biochemical oxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data underlying the results are available as part of the article, and no additional source data are required.

References

  • Abdollahi, H., Shafaei, S. Z., Noaparast, M., & Manafi, Z. (2017). Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: Effects of silver ion, medium and energy sources. International Journal of Mining and Geo-Engineering, 51(2), 151–159.

    Google Scholar 

  • Aksoy, T., Cetin, M., Cabuk, S. N., Senyel Kurkcuoglu, M. A., Bilge Ozturk, G., & Cabuk, A. (2023). Impacts of wind turbines on vegetation and soil cover: A case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean Technologies and Environmental Policy, 25(1), 51–68.

    Article  Google Scholar 

  • Alakangas, L., & Öhlander, B. (2006). Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden. Environmental Geology, 50, 809–819.

    Article  CAS  Google Scholar 

  • Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2), 139–152.

    Article  CAS  Google Scholar 

  • Barron, J. L., & Lueking, D. R. (1990). Growth and maintenance of Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology, 56(9), 2801–2806.

    Article  CAS  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.

    Article  CAS  Google Scholar 

  • Cesur, A., Zeren Cetin, I., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, Air, & Soil Pollution, 233(6), 193.

    Article  CAS  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022a). Determination and mapping of regional change of Pb and Cr pollution in Ankara city center. Water, Air, & Soil Pollution, 233(5), 163.

    Article  CAS  Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., Senyel Kurkcuoglu, M. A., Kucukpehlivan, T., & Cabuk, A. (2022b). Examination of the change in the vegetation around the Kirka Boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 233(7), 254.

    Article  CAS  Google Scholar 

  • Cetin, M. (2013). Landscape engineering, protecting soil, and runoff storm water. In Advances in landscape architecture.

    Google Scholar 

  • Cicek, N., Erdogan, M., Yucedag, C., & Cetin, M. (2022). Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water, Air, & Soil Pollution, 233(6), 197.

    Article  CAS  Google Scholar 

  • Córdoba, E. M., Muñoz, J. A., Blázquez, M. L., González, F., & Ballester, A. (2008). Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy, 93(3–4), 81–87.

    Article  Google Scholar 

  • Deveci, H. A. C. I., Akcil, A., & Alp, I. (2004). Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron. Hydrometallurgy, 73(3–4), 293–303.

    Article  CAS  Google Scholar 

  • Ding, J. N., Jian, G. A. O., Wu, X. L., Zhang, C. G., Wang, D. Z., & Qiu, G. Z. (2007). Jarosite-type precipitates mediated by YN22, Sulfobacillus thermosulfidooxidans, and their influences on strain. Transactions of Nonferrous Metals Society of China, 17(5), 1038–1044.

    Article  CAS  Google Scholar 

  • Dutrizac, J. E. (2004). The behaviour of the rare earths during the precipitation of sodium, potassium and lead jarosites. Hydrometallurgy, 73(1–2), 11–30.

    Article  CAS  Google Scholar 

  • Dutrizac, J. E., & Jambor, J. L. (2000). Jarosites and their application in hydrometallurgy. Reviews in Mineralogy and Geochemistry, 40(1), 405–452.

    Article  CAS  Google Scholar 

  • Figueiredo, M. O., & da Silva, T. P. (2011). The positive environmental contribution of jarosite by retaining lead in acid mine drainage areas. International Journal of Environmental Research and Public Health, 8(5), 1575–1582.

    Article  CAS  Google Scholar 

  • Garcia, O., Jr., Bigham, J. M., & Tuovinen, O. H. (2007). Oxidation of isochemical FeS2 (marcasite–pyrite) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Minerals Engineering, 20(1), 98–101.

    Article  Google Scholar 

  • Grishin, S. I., Bigham, J. M., & Tuovinen, O. H. (1988). Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Applied and Environmental Microbiology, 54(12), 3101–3106.

    Article  CAS  Google Scholar 

  • Gu, G. H., Hu, K. T., & Li, S. K. (2013). Bioleaching and electrochemical properties of chalcopyrite by pure and mixed culture of Leptospirillum ferriphilum and Acidthiobacillus thiooxidans. Journal of Central South University, 20(1), 178–183.

    Article  CAS  Google Scholar 

  • Holmes, D. S. (2008). Review of international biohydrometallurgy symposium, Frankfurt, 2007. Hydrometallurgy, 92(1–2), 69–72.

    Article  CAS  Google Scholar 

  • Jia, R., Unsal, T., Xu, D., Lekbach, Y., & Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation, 137, 42–58.

    Article  CAS  Google Scholar 

  • Kazemi, M. J., Kargar, M., Nowroozi, J., Sepahi, A. A., Doosti, A., & Manafi, Z. (2019). The wide distribution of an extremely thermoacidophilic microorganism in the copper mine at ambient temperature and under acidic condition and its significance in bioleaching of a chalcopyrite concentrate. Revista Argentina De Microbiologia, 51(1), 56–65.

    Article  Google Scholar 

  • King, P. L., & McSween, H. Y., Jr. (2005). Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. Journal of Geophysical Research: Planets, 110(12), 12–22.

    Google Scholar 

  • Klauber, C. (2008). A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing, 86(1–4), 1–17.

    Article  CAS  Google Scholar 

  • Kocaman, A. T., Cemek, M., & Edwards, K. J. (2016). Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Canadian Journal of Microbiology, 62(8), 629–642.

    Article  Google Scholar 

  • Kravkaz Kuscu, I. S., Cetin, M., Yigit, N., Savaci, G., & Sevik, H. (2018). Relationship between enzyme activity (Urease-Catalase) and nutrient element in soil use. Polish Journal of Environmental Studies, 27(5).

  • Kravkaz-Kuscu, I. S., Sariyildiz, T., Cetin, M., Yigit, N., Sevik, H., & Savaci, G. (2018). Evaluation of the soil properties and primary forest tree species in Taskopru (Kastamonu) district. Fresenius Environmental Bulletin, 27(3), 1613–1617.

    CAS  Google Scholar 

  • Lee, E., Han, Y., Park, J., Hong, J., Silva, R. A., Kim, S., & Kim, H. (2015). Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. Journal of Environmental Management, 147, 124–131.

    Article  CAS  Google Scholar 

  • Leng, F., Li, K., Zhang, X., Li, Y., Zhu, Y., Lu, J., & Li, H. (2009). Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy, 98(3–4), 235–240.

    Article  CAS  Google Scholar 

  • Matusiewicz, H. (2017). Sample preparation for inorganic trace element analysis. Physical Sciences Reviews, 2(5), 20178001.

    Article  Google Scholar 

  • Milojevic, T., Kölbl, D., Ferrière, L., Albu, M., Kish, A., Flemming, R. L., & Rupert, A. N. (2019). Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Scientific Reports, 9(1), 18028.

    Article  CAS  Google Scholar 

  • Nazari, B., Jorjani, E., Hani, H., Manafi, Z., & Riahi, A. (2014). Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. Transactions of Nonferrous Metals Society of China, 24(4), 1152–1160.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2009). Acid rock drainage and climate change. Journal of Geochemical Exploration, 100(2–3), 97–104.

    Article  CAS  Google Scholar 

  • Qiu, M. Q., Xiong, S. Y., Zhang, W. M., & Wang, G. X. (2005). A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Minerals Engineering, 18(9), 987–990.

    Article  CAS  Google Scholar 

  • Rawlings, D. E. (2001). The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron-or sulfur-oxidizing bacteria. Hydrometallurgy, 59(2–3), 187–201.

    Article  CAS  Google Scholar 

  • Rawlings, D. E. (2011). Biomining (mineral bioleaching, mineral biooxidation).In Encyclopedia of geobiology, 182–185.

  • Sajjad, W., Zheng, G., Din, G., Ma, X., Rafiq, M., & Xu, W. (2019). Metals extraction from sulfide ores with microorganisms: The bioleaching technology and recent developments. Transactions of the Indian Institute of Metals, 72, 559–579.

    Article  CAS  Google Scholar 

  • Shu, X., Dang, Z., Zhang, Q., Yi, X., Lu, G., Guo, C., & Yang, C. (2013). Passivation of metal-sulfide tailings by covalent coating. Minerals Engineering, 42, 36–42.

    Article  CAS  Google Scholar 

  • Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77(5), 642–647.

    Article  CAS  Google Scholar 

  • Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). Handbook of technologies for avoidance and remediation of acid mine drainage (p. 131). National Mine Land Reclamation Center.

    Google Scholar 

  • Sracek, O., Choquette, M., Gélinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec Canada. Journal of Contaminant Hydrology, 69(1–2), 45–71.

    Article  CAS  Google Scholar 

  • Sreekrishnan, T. R., Tyagi, R. D., Blais, J. F., & Campbell, P. G. (1993). Kinetics of heavy metal bioleaching from sewage sludge—I. Effects of process parameters. Water Research, 27(11), 1641–1651.

    Article  CAS  Google Scholar 

  • Tekin, O., Cetin, M., Varol, T., Ozel, H. B., Sevik, H., & Zeren Cetin, I. (2022). Altitudinal migration of species of Fir (Abies spp.) in adaptation to climate change. Water, Air, & Soil Pollution, 233(9), 385.

    Article  CAS  Google Scholar 

  • Third, K. A., Cord-Ruwisch, R., & Watling, H. R. (2000). The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy, 57(3), 225–233.

    Article  CAS  Google Scholar 

  • Ubaldini, S., Veglio, F., Beolchini, F., Toro, L., & Abbruzzese, C. (2000). Gold recovery from a refractory pyrrhotite ore by biooxidation. International Journal of Mineral Processing, 60(3–4), 247–262.

    Article  CAS  Google Scholar 

  • Varol, T., Emir, T., Akgul, M., Ozel, H. B., Acar, H. H., & Cetin, M. (2020). Impacts of small-scale mechanized logging equipment on soil compaction in forests. Journal of Soil Science and Plant Nutrition, 20, 953–963.

    Article  Google Scholar 

  • Varol, T., Ozel, H. B., Ertugrul, M., Emir, T., Tunay, M., Cetin, M., & Sevik, H. (2021). Prediction of soil-bearing capacity on forest roads by statistical approaches. Environmental Monitoring and Assessment, 193, 1–13.

    Article  Google Scholar 

  • Wang, H., Bigham, J. M., & Tuovinen, O. H. (2007). Oxidation of marcasite and pyrite by iron-oxidizing bacteria and archaea. Hydrometallurgy, 88(1–4), 127–131.

    Article  CAS  Google Scholar 

  • Wang, G., Xie, S., Liu, X., Wu, Y., Liu, Y., & Zeng, T. (2018). Bio-oxidation of a high-sulfur and high-arsenic refractory gold concentrate using a two-stage process. Minerals Engineering, 120, 94–101.

    Article  CAS  Google Scholar 

  • Watling, H. R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy, 84(1–2), 81–108.

    Article  CAS  Google Scholar 

  • Watling, H. R. (2008). The bioleaching of nickel-copper sulfides. Hydrometallurgy, 91(1–4), 70–88.

    Article  CAS  Google Scholar 

  • Xingyu, L., Rongbo, S., Bowei, C., Biao, W., & Jiankang, W. (2009). Bacterial community structure change during pyrite bioleaching process: Effect of pH and aeration. Hydrometallurgy, 95(3–4), 267–272.

    Article  Google Scholar 

  • Yadollahi, A., Abdollahi, H., Ardejani, F. D., Mirmohammadi, M., & Magdouli, S. (2021). Bio-oxidation behavior of pyrite, marcasite, pyrrhotite, and arsenopyrite by sulfur-and iron-oxidizing acidophiles. Bioresource Technology Reports, 15, 100699.

    Article  CAS  Google Scholar 

  • Yin, S. H., Wu, A. X., & Qiu, G. Z. (2008). Bioleaching of low-grade copper sulphides. Transactions of Nonferrous Metals Society of China, 18(3), 707–713.

    Article  CAS  Google Scholar 

  • Zhao, K., Gu, G., Wang, X., Yan, ; Wu, and Qiu, G. (2017). Study on the jarosite mediated by bioleaching of pyrrhotite using Acidthiobacillus ferrooxidans. Bioscience Journal, 3, 721–729.

Download references

Acknowledgements

The authors are grateful to the staff of the Mineral Processing, Mine Environment and Hydrogeology Research (MEHR), and Geochemistry Laboratory of the University of Tehran for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Ali Yadollahi: investigation, methodology, software, formal analysis, validation, data curation, writing—original draft, writing—review and editing, and visualization. Hadi Abdollahi: conceptualization, methodology, validation, supervision, project administration, funding acquisition, and writing—review and editing. Faramarz Doulati Ardejani: supervision, funding acquisition, resources, and writing—review and editing. Mirsaleh Mirmohammadi: resources and funding acquisition.

Corresponding author

Correspondence to Ali Yadollahi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biooxidation of sulfide minerals was used to evaluate AMD production.

• Dissolution of marcasite and pyrite produces AMD.

• Moderately thermophilic microorganisms dissolve Fe, Ni, and Zn.

• Jarosite precipitation can affect the biooxidation process of pyrrhotite.

• Arsenopyrite has a low iron dissolution rate due to its toxicity to bacteria.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadollahi, A., Abdollahi, H., Ardejani, F.D. et al. The Impact of Moderate Thermophiles on the Production of Acid Mine Drainage and the Dissolution of Ni and Zn from Iron-Bearing Sulfide Minerals. Water Air Soil Pollut 235, 203 (2024). https://doi.org/10.1007/s11270-024-06997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06997-7

Keywords

Navigation