Skip to main content
Log in

Remediating Nitrate Contamination in Al-Arbaeen Lagoon: Evaluating the Efficacy of CNT/TiO2 Photocatalyst

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The distribution pattern of nitrate in Al-Arbaeen lagoon is a matter of concern due to its elevated levels, which pose significant risks to the environment and human health. This particular research aims to address the issue by exploring the remediation potential of a photocatalyst composed of multiwalled carbon nanotube-modified titanium dioxide (CNT/TiO2). The study focuses on assessing the efficiency of this photocatalytic process in degrading nitrate and reducing its concentration in water samples collected from Al-Arbaeen lagoon. By modifying TiO2 with carbon, the photocatalyst's activity is enhanced, enabling efficient degradation of nitrate under sunlight and expanding its absorption range to visible light. A batch reactor equipped with the carbon-modified TiO2 catalyst is employed, and changes in nitrate concentration over time are analyzed. The carbon-modified TiO2 photocatalyst effectively decreases the concentration of nitrate in the water samples. As a result, the photocatalytic process facilitates the conversion of nitrate into harmless byproducts, ultimately enhancing the overall water quality. The researchers conducted various characterizations of the prepared photocatalyst using SEM, EDX, XRD, FTIR, and UV–Vis spectrophotometer. Various factors, including the amount of catalyst used, the initial concentration of nitrate, and the duration of the reaction, were observed to affect the efficiency of degradation. The study also investigates the kinetics and mechanism of the photocatalytic process, shedding light on the degradation pathway of nitrate and the role of carbon modification in improving the photocatalyst's performance. Under optimized conditions, the photocatalytic process achieved 100% removal efficiency of nitrate from the polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References 

  • Abbasizadeh, S., Keshtkar, A. R., & Mousavian, M. A. (2013). Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chemical Engineering Journal, 220, 161–171.

    Article  CAS  Google Scholar 

  • Alelyani, S. S., Kavil, Y. N., Al-Farawati, R. K., Zobidi, M., Salam, M. A., & Shaban, Y. A. (2023). Superior photocatalytic aptitude of MWCNT/TiO2 for the removal of Cr (VI) from polluted water. Research on Chemical Intermediates, 49(5), 1819–1842.

    Article  CAS  Google Scholar 

  • Alfarawati, R. K., Shaban, Y. A., Turki, A. J., Kavil, Y. N., & Zobidi, M. I. (2020). Solar photocatalytic removal of arsenic from polluted water using carbon-modified titanium oxide nanoparticles supported on activated carbon. Environmental Chemistry, 17(8), 568–578.

    Article  CAS  Google Scholar 

  • Aljohani, N. S., Kavil, Y. N., Al-Farawati, R. K., Alelyani, S. S., Orif, M. I., Shaban, Y. A., Al-Mhyawi, S. R., Aljuhani, E. H., & Salam, M.A. (2023). The effective adsorption of arsenic from polluted water using modified Halloysite nanoclay. Arabian Journal of Chemistry, 16(5), p. 104652.

  • Ao, Y., Xu, J., & Fu, D. (2009). Study on the effect of different acids on the structure and photocatalytic activity of mesoporous titania. Applied Surface Science, 256(1), 239–245.

    Article  CAS  Google Scholar 

  • Boumaiza, L., Walter, J., Chesnaux, R., Lambert, M., Jha, M. K., Wanke, H., Brookfield, A., Batelaan, O., Galvão, P., Laftouhi, N. E., & Stumpp, C. (2022). Groundwater recharge over the past 100 years: Regional spatiotemporal assessment and climate change impact over the Saguenay-Lac-Saint-Jean region. Canada. Hydrological Processes, 36(3), e14526.

    Article  Google Scholar 

  • Chen, H., Shao, Y., Xu, Z., Wan, H., Wan, Y., Zheng, S., & Zhu, D. (2011). Effective catalytic reduction of Cr (VI) over TiO2 nanotube supported Pd catalysts. Applied Catalysis b: Environmental, 105(3–4), 255–262.

    Article  CAS  Google Scholar 

  • Choi, J., Park, H., & Hoffmann, M. R. (2010). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C, 114(2), 783–792.

    Article  CAS  Google Scholar 

  • Dolat, D., Quici, N., Kusiak-Nejman, E., Morawski, A. W., & Puma, G. L. (2012). One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Applied Catalysis b: Environmental, 115, 81–89.

    Article  Google Scholar 

  • Doudrick, K., Monzón, O., Mangonon, A., Hristovski, K., & Westerhoff, P. (2012). Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100). Journal of Environmental Engineering, 138(8), 852–861.

    Article  CAS  Google Scholar 

  • Du, P., Bueno-Lopez, A., Verbaas, M., Almeida, A. R., Makkee, M., Moulijn, J. A., & Mul, G. (2008). The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis, 260(1), 75–80.

    Article  CAS  Google Scholar 

  • Endo, M., Takeuchi, K., Hiraoka, T., Furuta, T., Kasai, T., Sun, X., Kiang, C. H., & Dresselhaus, M. S. (1997). Stacking nature of graphene layers in carbon nanotubes and nanofibres. Journal of Physics and Chemistry of Solids, 58(11), 1707–1712.

    Article  CAS  Google Scholar 

  • Erostate, M., Huneau, F., Garel, E., Vystavna, Y., Santoni, S., & Pasqualini, V. (2019). Coupling isotope hydrology, geochemical tracers and emerging compounds to evaluate mixing processes and groundwater dependence of a highly anthropized coastal hydrosystem. Journal of Hydrology, 578, 123979.

    Article  CAS  Google Scholar 

  • Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment, 31(2), 64–71.

    Article  Google Scholar 

  • Howarth, R. W., Boyer, E. W., Pabich, W. J., & Galloway, J. N. (2002). Nitrogen use in the United States from 1961–2000 and potential future trends. AMBIO: A Journal of the Human Environment, 31(2), 88–96.

    Article  Google Scholar 

  • Isaza, D. F. G., Cramp, R. L., & Franklin, C. E. (2020). Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa. Environmental Pollution, 261, 114091.

    Article  Google Scholar 

  • Kavil, Y. N., Shaban, Y. A., Alelyani, S. S., Al-Farawati, R., Orif, M. I., Ghandourah, M. A., Schmidt, M., Turki, A. J., & Zobidi, M. (2020). The removal of methylene blue as a remedy of dye-based marine pollution: A photocatalytic perspective. Research on Chemical Intermediates, 46(1), 755–768.

    Article  CAS  Google Scholar 

  • Khan, S. U., Al-Shahry, M., & Ingler, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297(5590), 2243–2245.

    Article  CAS  Google Scholar 

  • Kim, J. R., & Kan, E. (2016). Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. Journal of Environmental Management, 180, 94–101.

    Article  CAS  Google Scholar 

  • Kongkanand, A., & Kamat, P. V. (2007). Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS nano, 1(1), 13–21.

    Article  CAS  Google Scholar 

  • Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials. Part i. JOSA, 38(5), 448–457.

    Article  CAS  Google Scholar 

  • Kusiak-Nejman, E., & Morawski, A. W. (2019). TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Applied Catalysis b: Environmental, 253, 179–186.

    Article  CAS  Google Scholar 

  • Lee, H. S., Im, S. J., Kim, J. H., Kim, H. J., Kim, J. P., & Min, B. R. (2008). Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 219(1–3), 48–56.

    Article  CAS  Google Scholar 

  • Lin, J., Luo, Z., Liu, J., & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87, 24–31.

    Article  CAS  Google Scholar 

  • Ling, C. M., Mohamed, A. R., & Bhatia, S. (2004). Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere, 57(7), 547–554.

    Article  CAS  Google Scholar 

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1–59.

    Article  CAS  Google Scholar 

  • Mallakpour, S., & Nikkhoo, E. (2014). Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Advanced Powder Technology, 25(1), 348–353.

    Article  CAS  Google Scholar 

  • Masoumi, A., Hemmati, K., & Ghaemy, M. (2016). Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb (II) and crystal violet from water. Chemosphere, 146, 253–262.

    Article  CAS  Google Scholar 

  • Mekatel, H., Amokrane, S., Bellal, B., Trari, M., & Nibou, D. (2012). Photocatalytic reduction of Cr (VI) on nanosized Fe2O3 supported on natural Algerian clay: Characteristics, kinetic and thermodynamic study. Chemical Engineering Journal, 200, 611–618.

    Article  Google Scholar 

  • Menció, A., Casamitjana, X., Mas-Pla, J., Coll, N., Compte, J., Martinoy, M., Pascual, J., & Quintana, X. D. (2017). Groundwater dependence of coastal lagoons: The case of La Pletera salt marshes (NE Catalonia). Journal of Hydrology, 552, 793–806.

    Article  Google Scholar 

  • Mittal, A. K., Thanki, K., Jain, S., & Banerjee, U. C. (2016). Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Journal of Materials NanoScience, 3(2), 22–27.

    Google Scholar 

  • Nakano, Y., Morikawa, T., Ohwaki, T., & Taga, Y. (2005). Electrical characterization of band gap states in C-doped TiO2 films. Applied Physics Letters, 87(5), 052111.

    Article  Google Scholar 

  • Nieto-López, J. M., Barberá, J. A., Andreo, B., Ramírez-González, J. M., & Rendón-Martos, M. (2020). Hydro-environmental changes assessment after Guadalhorce River mouth channelization. An example of hydromodification in Southern Spain. Catena, 189, 104461.

    Article  Google Scholar 

  • Orif, M. I., Kavil, Y. N., Al-Farawati, R. K., & Sudheesh, V. (2023). Deoxygenation turns the coastal Red Sea lagoons into sources of nitrous oxide. Marine Pollution Bulletin, 189, 114806.

    Article  CAS  Google Scholar 

  • Rodellas, V., Stieglitz, T. C., Andrisoa, A., Cook, P. G., Raimbault, P., Tamborski, J. J., Van Beek, P., & Radakovitch, O. (2018). Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Science of the Total Environment, 642, 764–780.

    Article  CAS  Google Scholar 

  • Sa, J., Agüera, C. A., Gross, S., & Anderson, J. A. (2009). Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis b: Environmental, 85(3–4), 192–200.

    Article  CAS  Google Scholar 

  • Shaban, Y., & Alharbi, N. A. (2022). Sunlight-mediated photocatalytic removal of phenanthrene from wastewater using carbon-doped zinc oxide (C-ZnO) nanoparticles. Environmental Science and Pollution Research, 29(31), 47818–47831.

    Article  CAS  Google Scholar 

  • Shaban, Y. A., & Fallata, H. M. (2019). Sunlight-induced photocatalytic degradation of acetaminophen over efficient carbon doped TiO2 (CTiO2) nanoparticles. Research on Chemical Intermediates, 45, 2529–2547.

    Article  CAS  Google Scholar 

  • Shaban, Y. A., El Maradny, A. A., & Al Farawati, R. K. (2016). Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles. Journal of Photochemistry and Photobiology a: Chemistry, 328, 114–121.

    Article  CAS  Google Scholar 

  • Stanbury, D. M. (1989). Reduction potentials involving inorganic free radicals in aqueous solution. Advances in inorganic chemistry (33, pp. 69–138).

  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2), 627–637.

  • Tiwari, A. K., & Pal, D. B. (2022). Nutrients contamination and eutrophication in the river ecosystem. Ecological Significance of River Ecosystems (pp. 203–216).

  • Umebayashi, T., Yamaki, T., Tanaka, S., & Asai, K. (2003). Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 32(4), 330–331.

    Article  CAS  Google Scholar 

  • Wang, W., Serp, P., Kalck, P., Silva, C. G., & Faria, J. L. (2008). Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Materials Research Bulletin, 43(4), 958–967.

    Article  CAS  Google Scholar 

  • Wang, R., Ren, D., Xia, S., Zhang, Y., & Zhao, J. (2009). Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 169(1–3), 926–932.

    CAS  Google Scholar 

  • Yu, B., Zeng, J., Gong, L., Zhang, M., Zhang, L., & Chen, X. (2007). Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta, 72(5), 1667–1674.

    Article  CAS  Google Scholar 

  • Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., & Wang, X. (2018). Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chemical Engineering Journal, 333, 343–360.

    Article  CAS  Google Scholar 

  • Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O’Shea, K., El-Sheikh, S. M., Ismail, A. A., & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Applied Catalysis b: Environmental, 144, 614–621.

    Article  CAS  Google Scholar 

  • Zhang, Z., Huang, Z., Cheng, X., Wang, Q., Chen, Y., Dong, P., & Zhang, X. (2015). Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Applied Surface Science, 355, 45–51.

    Article  CAS  Google Scholar 

Download references

Funding

The current study doesn’t have any funding.

Author information

Authors and Affiliations

Authors

Contributions

Saeed Saad Alelyani: Experimental analysis, original manuscript draft preparation and reviewing the manuscript.

Yasar N Kavil: Experimental analysis, original manuscript draft preparation and reviewing the manuscript.

Radwan Kh Al-Farawati: Experimental design and reviewing the manuscript.

Mousa Zobidi: Experimental analysis and reviewing the manuscript.

Mohamed Abdel Salam: Characterization and reviewing the manuscript.

Yasser A Shaban: Conceptualization, original manuscript draft preparation and reviewing the manuscript.

Corresponding author

Correspondence to Yasser A. Shaban.

Ethics declarations

Ethical Approval

The current study has not involved in any human or animals.

Conflict of Interest

The current paper doesn’t have any conflict of interest. The corresponding author approves the above statement as well.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alelyani, S.S., Kavil, Y.N., Al-Farawati, R.K. et al. Remediating Nitrate Contamination in Al-Arbaeen Lagoon: Evaluating the Efficacy of CNT/TiO2 Photocatalyst. Water Air Soil Pollut 235, 177 (2024). https://doi.org/10.1007/s11270-024-06980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06980-2

Keywords

Navigation