Skip to main content

Advertisement

Log in

Analyzing the Impact of Climate Data Using Geospatial Techniques on Land Use and Land Cover Changes in the Kaveri River Basin, Manmangalam Taluk, Karur District, Tamil Nadu

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Knowledge of variations in climate, changes, and forecasts is critical for improved water utilization and development in a region. Because the water reserves of the Kaveri River basin in Manmangalam Taluk, Karur District, are extremely susceptible to a shifting climate, the current study utilized 31 years of information on climate data, including the earth’s surface skin temperature (EST), temperature, and precipitation, and also analyzed human disturbance score (HDS) that impacts land use and land cover shifts. The HDS scores of water bodies are further graded and categorized into low, middle, and high impacts by the method (Gernes & Helgen, 2002) with slight modification. Here is a statistically not significant but positive correlation between the year and earth’s skin temperatures (r = .152, N = 27, p > .001). Temperature and year exhibit a substantial, positive link (r = .255, N = 27, p > .001) and were statistically connected. The association between the year and precipitation was non-significant and positive (r = .064, N = 27, p > .001). Also, the relationship between years and human disturbance score levels was shown to be significantly positive (r = .953, N = 27, p > 001). HDS values are classified into three types. The minimum ranges from 34 to 75. The least impacted (LI) was 7.40% from 1995 to 1997, the most impacted (MI) was 51.85% from 1997 to 2010, and the most impacted (HI) is presently 40.74% because nearby counties gained a substantial number of people following the economic developments, resulting in an abrupt shift in its LULC pattern. Also, the purpose of this investigation is to examine the shifts in LULC from 2004 to 2022 by using QGIS software. The findings reveal major shifts, with a constant increase in urban areas and open/fallow areas and a decline in cropland and vegetation. Throughout the research span, the residential area expanded by 15.24% and open land grew by 3.94%, whereas farming surfaces were reduced. The reduction of agricultural land for cultivation and plant cover has significantly contributed to the growth of built-up areas, while urban sprawl has replaced foliage, ridges, and farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abass, K., Adanu, S. K., & Agyemang, S. (2018). Peri-urbanisation and loss of arable land in Kumasi Metropolis in three decades: Evidence from remote sensing image analysis. Land Use Policy, 72, 470–479. https://doi.org/10.1016/j.landusepol.2018.01.013. Accessed 13 Jan 2018

  • Abrantes, P., Fontes, I., Gomes, E., & Rocha, J. (2016). Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy, 51, 120–134. https://doi.org/10.1016/j.landusepol.2015.10.023

  • Aduah, M. S., & Baffoe, P. E. (2013). Remote sensing for mapping land-use/ cover changes and urban sprawl in Sekondi-Takoradi, Western region of Ghana. The International Journal of Engineering and Science (IJES), 2(10), 66–72. https://doi.org/10.6084/M9.FIGSHARE.848547.V1

  • Adiguzel, F., Cetin, M., Kaya, E., Simsek, M., Gungor, S., & Bozdogan Sert, E. (2020). Defning suitable areas for bioclimatic comfort for landscape planning and landscape management in Hatay Turkey. Theoretical and Applied Climatology, 139(3), 1493–1503.

    Article  Google Scholar 

  • Ahn, J. M., Kwon, H. G., Yang, D. S., & Kim, Y.-S. (2018). Assessing environmental flows of coordinated operation of dams and weirs in the Geum River basin under climate change scenarios. Science of the Total Environment, 643, 912–925. https://doi.org/10.1016/j.scitotenv.2018.06.225

    Article  CAS  Google Scholar 

  • Palanichamy, A. (2013). Land use / land cover mapping in analysis of tiruchirappalli district, tamilnadu using geoinformatics. International Journal of Latest Trends in Engineering and Technology, 9(4), 161–165. https://doi.org/10.21172/1.94.26

    Article  Google Scholar 

  • Alawamy, J. S., Balasundram, S. K., Mohd Hanif, A. H., & Boon Sung, C. T. (2020). Detecting and analysing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability, 12(11), 4490.

    Article  Google Scholar 

  • Cesur, A., Cetin, I. Z., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water Air Soil Pollut., 233, 193. https://doi.org/10.1007/s11270-022-05667-w. Vol.: (0123456789)1 3.

    Article  CAS  Google Scholar 

  • Armstrong, A., Burton, R. R., Lee, S. E., Mobbs, S., Ostle, N., Smith, V., Waldron, S., & Whitaker, J. (2016). Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environmental Research Letters, 11, 044024.

    Article  Google Scholar 

  • Arnell, N. W., & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364.

    Article  Google Scholar 

  • Atik, M., Altan, T., & Artar, M. (2010). Land use changes in relation to coastal tourism developments in Turkish Mediterranean. Polish J Environ Stud, 19(1), 21–33.

    Google Scholar 

  • Baessler, C., & Klotz, S. (2006). Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agriculture, Ecosystems & Environment, 115(1–4), 43–50. https://doi.org/10.1016/j.agee.2005.12.007

  • Balachandar, D., Rutharvel Murthy, K., Muruganandam, R., Sumathi, M., & Sundararaj Kumaraswamy, K. (2011). Analysis of land use/land cover using remote sensing techniques a case study of Karur district, Tamil Nadu, India. International Journal of Current Research., 3(12), 226–229.

    Google Scholar 

  • Begum, R. A., Siwar, C., Abidin, R. D. Z. R. Z., & Pereira, J. J. (2011). Vulnerability of climate change and hardcore poverty in Malaysia. Journal of Environmental Science and Technology, 4(2), 112–117.

    Article  Google Scholar 

  • Berhe, A. A., Arnold, C., Stacy, E., Lever, R., McCorkle, E., & Araya, S. N. (2014). Soil erosion controls on biogeochemical cycling of carbon and nitrogen. Nature Education Knowledge, 5(8), 2.

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., ... &Yibeltal, M. (2019). Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy, 87, 104052.

  • Boavida-Portugal, I., Rocha, J., & Ferreira, C. C. (2016). Exploring the impacts of future tourism development on land use/cover changes. Applied Geography, 77, 82–91. https://doi.org/10.1016/j.apgeog.2016.10.009

  • Börjesson, P., & Tufvesson, L. M. (2011). Agricultural crop-based biofuels– Resource efficiency and environmental performance including direct land use changes. Journal of Cleaner Production, 19(2–3), 108–120. https://doi.org/10.1016/j.jclepro.2010.01.001

  • Bozdogan Sert, E., Turkmen, M., & Cetin, M. (2019). Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey). Environmental Monitoring and Assessment, 191, 553, https://doi.org/10.1007/s10661-019-7714-7. https://rd.springer.com/article/10.1007/s10661-019-7714-7.

  • Bozdogan Sert, E., Kaya, E., Adiguzel, F., Cetin, M., Gungor, S., Zeren Cetin, I., & Dinc, Y. (2021). Efect of the surface temperature of surface materials on thermal comfort: a case study of Iskenderun (Hatay, Turkey). Theoretical and Applied Climatology, 144(1), 103–113.

    Article  Google Scholar 

  • Breiman, L. (2001). Using iterated bagging to debias regressions. Machine Learning, 45, 261–277.

    Article  Google Scholar 

  • Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x

    Article  Google Scholar 

  • Cetin, M., & Abo Aisha, A. E. S. (2023). Variation of Al concentrations depending on the growing environment in some indoor plants that used in architectural designs. Environmental Science and Pollution Research, 30(7), 18748–18754. https://doi.org/10.1007/s11356-022-23434-6. Access on 10 Jun 2023.

  • Cetin, M., & Jawed, A. A. (2021). The chancing of Mg concentrations in some plants grown in Pakistan depends on plant species and the growing environment. Kastamonu University Journal of Engineering and Sciences, 7(2), 167–174.

    Google Scholar 

  • Cetin, M., & Jawed, A. A. (2022). Variation of Ba concentrations in some plants grown in Pakistan depending on trafc density. Biomass Conversion and Biorefinery, 2022, 2023. https://doi.org/10.1007/s13399-022-02334-2.Accessed10Jun

    Article  Google Scholar 

  • Cetin M. (2017). Change in amount of chlorophyll in some interior ornamental plants (Bazı İç Mekan Süs Bitkilerinde Klorofil Miktarının Değişimi) Kastamonu University. Journal of Engineering and Sciences, 3(1), 11–19. https://doi.org/10.24214/jcbps.B.7.3.80717

  • Cetin, M. (2015). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22(5), 420–424. https://doi.org/10.1080/13504509.2015.1061066

    Article  Google Scholar 

  • Cetin, M., & Sevik, H. (2016). Change of air quality in Kastamonu city in terms of particulate matter and CO2 amount. Oxidation Communications, 39(4), 3394–3401.

    CAS  Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., et al. (2023). Determination of the impacts of mining activities on land cover and soil organic carbon: Altintepe Gold Mine Case, Turkey. Water, Air, & Soil Pollution, 234, 272. https://doi.org/10.1007/s11270-023-06274-z

    Article  CAS  Google Scholar 

  • Chen, J., Wu, X., Finlayson, B. L., Webber, M., Wei, T., Li, M., & Chen, Z. (2014). Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. Journal of Hydrology, 513, 403–412.

    Article  Google Scholar 

  • Colins, W., Colman, R., Haywood, J., Manning, M. R., & Mote, P. (2007). The physical science behind climate change. Scientific American, 297, 62–73.

    Google Scholar 

  • Congalton, R. G. (1991a). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Congalton, R. G. (1991b). Remote sensing and geographic information system data integration: error sources and. Photogrammetric Engineering & Remote Sensing, 57(6), 677–687.

    Google Scholar 

  • Costa, M. H., Botta, A., & Cardille, J. A. (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, South-Eastern Amazonia. Journal of Hydrology, 283(1–4), 206–217.

    Article  Google Scholar 

  • Crooks, S., Davies, H., &Goodsell, G. (2000). Rainfall runoff modelling and the impact of land use change in the Thams catchment. In European Conference on Advances in Flood Research (pp. 115–130). https://www.researchgate.net/publication/295356271

  • DeFries, R., & Eshleman, K. N. (2004). Land-use change and hydrologic processes: a major focus for the future. Hydrological Processes, 18(11), 2183–2186.

    Article  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., … & Thornbrugh, D. J. (2009). Eutrophication of US freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43, 12–19. https://doi.org/10.1021/es801217q [PubMed] [Google Scholar]

  • Döll, P., & Schmied, H. M. (2012). How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1), 014037. https://doi.org/10.1088/1748-9326/7/1/014037

    Article  Google Scholar 

  • Döll, P., & Zhang, J. (2010). Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14(5), 783–799. https://doi.org/10.5194/hess-14-783-2010

    Article  Google Scholar 

  • Dong, R., Yu, L., & Liu, G. (2008). Impact of tourism development on landcover change in a matriarchal community in the Lugu Lake area. The International Journal of Sustainable Development and World Ecology, 15(1), 28–35. https://doi.org/10.1080/13504500809469765

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A., Gessner, M., Kawabata, Z.-I., Knowler, D., Lévêque, C., Naiman, R., Prieur-Richard, A.-H., Soto, D., Stiassny, M., & Sullivan, C. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81, 163–182.

    Article  Google Scholar 

  • Endo, H., Kodama, H., Fukuda, T., Sugimoto, T., & Horie, M. K. (2015). Effect of climatic conditions on energy consumption in direct fresh-air container data centers. Sustainable Computing: Informatics and Systems., 6, 17–25.

    Google Scholar 

  • Farfan, M. A., Vargas, J. M., Duarte, J., & Real, R. (2009). What is the impact of wind farms on birds? A case study in southern Spain. Biodiversity and Conservation, 18, 3743–3758. https://doi.org/10.1007/s10531-009-9677-4

    Article  Google Scholar 

  • Fenta, A. A., Yasuda, H., Haregeweyn, N., Belay, A. S., Hadush, Z., Gebremedhin, M. A., & Mekonnen, G. (2017). The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: the case of Mekelle City of northern Ethiopia. International Journal of Remote Sensing, 38(14), 4107–4129.

    Article  Google Scholar 

  • Field, C. B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G., & Allen, S. (2012). IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 30, 7575–7613.

    Google Scholar 

  • Fohrer, N., Haverkamp, S., Eckhardt, K., & Frede, H. G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part b: Hydrology, Oceans and Atmosphere, 26(7–8), 577–582.

    Article  Google Scholar 

  • Fugère, V., Nyboer, E. A., Bleecker, J. C., & Chapman, L. J. (2016). Impacts of forest loss on inland waters: Identifying critical research zones based on deforestation rates, aquatic ecosystem services, and past research effort. Biological Conservation, 201, 277–283. https://doi.org/10.1016/j.biocon.2016.07.012

    Article  Google Scholar 

  • Futemma, C., & Brondízio, E. S. (2003). Land reform and land-use changes in the lower Amazon: Implications for agricultural intensification. Human Ecology, 31(3), 369–402. https://doi.org/10.1023/A:1025067721480

    Article  Google Scholar 

  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment, 619, 1394–1408.

    Article  Google Scholar 

  • Geethalakshmi, V., & Dheebakaran, G. (2008). Impact of climate change on agriculture over Tamil Nadu. Chap IV. In G. S. L. H. V. Rao Prasada, G. G. S. N. Rao, V. U. M. Rao & Y. S. Ramakrishna (Eds.), Climate change and agriculture over India (pp. 80–93). CRIDA, Hyderabad. https://www.researchgate.net/publication/286657821

  • Gernes, M. C., & Helgen, J. C. (2002). Indexes of biological integrity (IBI) for large depressional wetlands in Minnesota. Minnesota Pollution Control Agency, St. Paul., MN, USA.

  • González-Villela, R., Martínez, M. J. M., & Sepúlveda, J. S. S. (2018). Effects of climate change on the environmental flows in the Conchos River (Chihuahua, Mexico). Ecohydrology & Hydrobiology, 18(4), 431–440. https://doi.org/10.1016/j.ecohyd.2018.10.004

    Article  Google Scholar 

  • Gresselin, F., Dardaillon, B., Bordier, C., Parais, F., & Kauffmann, F. (2021). Use of statistical methods to characterize the influence of groundwater on the thermal regime of rivers in Normandy, France: Comparison between the highly permeable, chalk catchment of the Touques river and the low permeability, crystalline rock catchment of the Orne river. Geological Society, London, Special Publications, 517(1), 351–378. https://doi.org/10.1144/SP517-2020-117. SP517-2020-117.

    Article  Google Scholar 

  • Gümüş, S., Bellibaş, M. Ş, Gümüş, E., & Hallinger, P. (2019). Science mapping research on educational leadership and management in Turkey: A bibliometric review of international publications. Advance online publication.

    Google Scholar 

  • Himika, S., & Kaur, R. (2018). Global land temperature prediction by machine learning combo approach. In: 2018 9th International Conference on Computing, Communication and Networking Technologies ICCCNT, 2018, 1–8. https://doi.org/10.1109/ICCCNT.2018.8494173

    Article  Google Scholar 

  • House, A. R., Thompson, J. R., Roberts, C., de Smeth, K., Old, G., & Acreman, M. C. (2017). Projecting impacts of climate change on habitat availability in a macrophyte dominated Chalk river. Ecohydrology, 10(4), e1823. https://doi.org/10.1002/eco.1823

    Article  Google Scholar 

  • Indian Meteriological Department. (2001). IMD, Chennai. https://mausam.imd.gov.in/Chennai

  • Isinkaralar, K., & Ramazan, E. (2021). Landscape plants as biomonitors for magnesium concentration in some species. International Journal of Progressive Sciences and Technologies, 29(2), 468–473.

    Google Scholar 

  • Işınkaralar, Ö., & Varol, Ç. (2021). Kent merkezlerinde ticaret birimlerin mekansal örüntüsü üzerine bir değerlendirme: kastamonu örneği. Journal of Architectural Sciences and Applications, 6(2), 396–403. https://doi.org/10.30785/mbud.927529

    Article  Google Scholar 

  • Iyappan, L., & Maria Subashini, L. (2014). Landuse change detection in Namakkal Taluk using remote sensing. International Journal of Applied Engineering Research, 9(22), 5699–5707. ISBN 0973-4562.

    Google Scholar 

  • Karl, T. R. (1998). Regional trends and variations of temperature and precipitation. The Regional Impacts of Climate Change: an Assessment of Vulnerability, 411, 425.

    Google Scholar 

  • Kilicoglu, C., Cetin, M., Aricak, B., & Sevik, H. (2021). Integrating multicriteria decision-making analysis for a GISbased settlement area in the district of Atakum, Samsun Turkey. Theoretical and Applied Climatology, 143, 379–388. https://doi.org/10.1007/s00704-020-03439-2

    Article  Google Scholar 

  • Klink, C. A., Moreira, A. G., & Solbrig, O. T. (1993). Ecological impacts of agricultural development in the Brazilian Cerrados. In M. D. Young & O. T. Solbrig (Eds.), The World’s Savannas: economic driving forces, ecological constraints and policy options for sustainable land use (Man in the Biosphere Series 12 (pp. 259–283). Parthenon Publishing.

    Google Scholar 

  • Korkanç, S. Y., Şahin, H., Özden, A. O., & Özkurt, B. (2018). The effects of land use transformations on organic carbon storage and some properties of soils: The case of Niğde region. Turkey Forestry Journal, 19(4), 362–367.

    Google Scholar 

  • Krishna Kumar, K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Rao, K. K., & Jones, R. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science, 101, 312–326.

    Google Scholar 

  • Laizé, C. L. R., Acreman, M. C., Schneider, C., Dunbar, M. J., Houghton-Carr, H. A., Flörke, M., & Hannah, D. M. (2014). Projected flow alteration and ecological risk for pan-European rivers. River Research and Applications, 30(3), 299–314. https://doi.org/10.1002/rra.2645

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

    Article  CAS  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(1), 205–241.

    Article  Google Scholar 

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

    Google Scholar 

  • Liu, H., Zhang, S., Li, Z., Lu, X., & Yang, Q. (2004). Impacts on wetlands of largescale land-use changes by agricultural development: the small Sanjiang plain, China. AMBIO: A Journal of the Human Environment, 33(6), 306–310.

    Article  Google Scholar 

  • Lu, Y., Wu, P., Ma, X., & Li, X. (2019). Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model. Environmental Monitoring and Assessment, 191(2), 1–19.

    Article  CAS  Google Scholar 

  • Maia, S. M. F., Ogle, S. M., Cerri, C. C., & Cerri, C. E. P. (2010). Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil Till Research, 106, 177–184.

  • Mao. X., Meng. J., & Wang, Q. (2014). Modeling the effects of tourism and land regulation on land-use change in tourist regions: aA case study of the Lijiang River Basin in Guilin, China. Land Use Policy, 41, 368–377. https://doi.org/10.1016/j.landusepol.2014.06.018

  • Mao, D., & Cherkauer, K. A. (2009). Impacts of land-use change on hydrologic responses in the Great Lake region. Journal Hydrology, 374(71–82). https://doi.org/10.1016/j.jhydrol.2009.06.016.

  • Marvel, K., & Bonfils, C. (2013). Identifying external influences on global precipitation. Proceedings of the National Academy of Sciences USA, 110(48), 19301–19306.

    Article  CAS  Google Scholar 

  • Meer, M. S., & Mishra, A. K. (2020). Land use/land cover changes over a district in northern India using remote sensing and GIS and their impact on society. and environment. Journal of the Geological Society of India, 95, 179–182.

    Article  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Cetin, I. Z. (2022). Determination and mapping of regional change of Pb and Cr pollution in Ankara City Center. Water, Air, & Soil Pollution, 233, 163. https://doi.org/10.1007/s11270-022-05638-1

    Article  CAS  Google Scholar 

  • Meshesha, D. T., Tsunekawa, A., & Tsubo, M. (2012). Continuing land degradation: Cause–effect in Ethiopia’s Central Rift Valley. Land Degradation & Development, 143, 130–143. https://doi.org/10.1002/ldr.1061

  • Meshesha, D. T., Tsunekawa, A., Tsubo, M., Ali, S. A., & Haregeweyn, N. (2014). Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. Regional Environmental Change, 14, 757–768.

    Article  Google Scholar 

  • Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218, 128–141.

    Article  Google Scholar 

  • Moravec, D., Barták, V., Puš, V., & Wild, J. (2018). Wind turbine impact on near-ground air temperature. Renew Energy, 123, 627–633.

    Article  Google Scholar 

  • Morello, L., Abbott, A., & Butler, D. (2014). 365days:2014 in science. Nature, 516, 300–303.

    Article  CAS  Google Scholar 

  • Norman, J. M., & Becker, F. (1995). Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology, 77(3–4), 153–166. https://doi.org/10.1016/0168-1923(95)02259-z

    Article  Google Scholar 

  • Ozturk, S., & Isinkaralar, O. (2019). Parkıng Problematıque in Kastamonu Cıty Center: a critical evaluation. The Journal of International Social Research, 12(67), 506–511.

    Google Scholar 

  • Öztürk, S., Işınkaralar, Ö., Yılmaz, D., Şimşek, M., Almansourı, H. M. S., & Elahsadı, A. H. M. (2021). Covıd19’un tüketici alışkanlıklarına etkisi üzerine bir araştırma: Türkiye-Libya karşılaştırması. Doğu Coğrafya Dergisi, 26(46), 97–108. https://doi.org/10.17295/ataunidcd.958864

    Article  Google Scholar 

  • Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., et al. (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2, 499–507. https://doi.org/10.1038/s41893-019-0287-1

    Article  Google Scholar 

  • Pazúr, R., & Bolliger, J. (2017). Land changes in Slovakia: Past processes and future directions. Applied Geography, 85, 163–175.

    Article  Google Scholar 

  • Piao, S. L., Ciais, P., Huang, Y., Shen, Z. H., Peng, S. S., Li, J. S., Zhou, L. P., Liu, H. Y., Ding, Y. H., Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90.

    Article  Google Scholar 

  • Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.

    Article  Google Scholar 

  • Bal, P. K., Ramachandran, A., Geetha, R., Bhaskaran, B., Thirumurugan, P., Indumathi, J., & Jayanthi, N. (2016). Climate change projections for Tamil Nadu: Deriving high resolution climate data by a downscaling approach using PRECIS. Theoretical and Applied Climatology, 123, 523–535. https://doi.org/10.1007/s00704-014-1367-9

    Article  Google Scholar 

  • Qin, X., Sun, J., & Wang, X. (2018). Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecological Indicators, 84, 507–514.

    Article  Google Scholar 

  • Rajewski, D. A., Takle, E. S., VanLoocke, A., & Purdy, S. L. (2020). Observations show that wind farms substantially modify the atmospheric boundary layer thermal stratification transition in the early evening. Geophysical Research Letters, 47, e2019GL086010.

    Article  Google Scholar 

  • Ravichandran, S, & Manonmani, I. K. (2021). Land use – land cover change analysis of Karur Town – A GIS approach. International Journal of Scientific Research in Science and Technology Print ISSN: 2395–6011 | Online ISSN: 2395–602X (www.ijsrst.com) https://doi.org/10.32628/IJSRST218373.

  • Rientjes, T., Haile, A., Kebede, E., Mannaerts, C. M. M., Habib, E., Steenhuis, T. S. (2011). Changes in land cover, rainfall and streamflow in Upper GilgelAbbay catchment, Blue Nile basin, Ethiopia. Hydrology and Earth System Sciences, 15, 1979–1989. https://doi.org/10.5194/hess-15-1979-2011

  • Rose, S., & Peters, N. E. (2001). Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach. Hydrological Processes, 15(8), 1441–1457.

    Article  Google Scholar 

  • Salmoral, G., Willaarts, B. A., Troch, P. A., & Garrido, A. (2015). Drivers influencing streamflow changes in the Upper Turia basin, Spain. Science of the Total Environment, 503, 258–268.

    Article  Google Scholar 

  • Scanlon, B. R., Jolly, I. D., Sophocleous, M., & Zhang, L. (2006). Global impacts of agricultural land-use changes on water resources: Quantity versus quality. Water Resources Researchhttps://doi.org/10.1029/2006WR005486

  • Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage., 5(1), 81–91.

    Article  CAS  Google Scholar 

  • Setegn, S. G., Srinivasan, R., & Dargahi, B. (2008). Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal, 2(1). https://doi.org/10.2174/1874378100802010049

  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxifcation in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58.

    Article  CAS  Google Scholar 

  • Silberstein, R. P., Aryal, S. K., Durrant, J., Pearcey, M., Braccia, M., Charles, S. P., ... & McFarlane, D. J. (2012). Climate change and runoff in south-western Australia. Journal of Hydrology, 475, 441–455.

  • Şimşek, Ç. K., Türk, T., Ödül, H., & Çelik, M. N. (2018). Detection of paragliding fields by GIS. International Journal of Engineering and Geosciences, 3(3), 119–125. https://doi.org/10.26833/ijeg.413833

    Article  Google Scholar 

  • Sinokrot, B. A., & Gulliver, J. S. (2000). In-stream flow impact on river water temperatures. Journal of Hydraulic Research, 38(5), 339–349. https://doi.org/10.1080/00221680009498315

    Article  Google Scholar 

  • Smith, T. F., Carter, R. W., Daffara, P., & Keys, N. (2010). The nature and utility of adaptive capacity research. National Climate Change Adaptation Research Facility (NCCARF), Griffith University, Gold Coast Campus, Southport, Australia, p 68

  • Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643. https://doi.org/10.1038/s41586-018-0411-

    Article  CAS  Google Scholar 

  • Srinivasan, R., Zhang, X., & Arnold, J. (2010). SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE, 53(5), 1533–1546.

    Article  CAS  Google Scholar 

  • Stankov U, Klaučo M, Dragićević V, Vujičić MD, Solarević M. (2016). Assessing land-use changes in tourism area on the example of Čajetina municipality (Serbia). Geographica Pannonica, 20(2), 105– 113. https://doi.org/10.5937/GeoPan1602105S

  • Suvetha, M., & Maniyosai, R. (2018). An analytical study on agricultural activities in Karur district and the temperament of agriculturlists. Journal of Emerging Technologies and Innovative Research (JETIR), 5(12). https://www.jetir.org

  • Tabari, H., & Willems, P. (2018). More prolonged droughts by the end of the century in the Middle East. Environmental Research Letters, 13(10), 104005.

    Article  Google Scholar 

  • Tağıl, Ş., & Ersayın, K. (2015). Balıkesir İlinde Dış Ortam Termal Konfor Değerlendirmesi. The Journal of International Social Research, 8(41). Yuka and Toroğlu, 7(2), 155–166.

  • Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–1521. https://doi.org/10.1007/s12665-009-0286-z

    Article  Google Scholar 

  • Thompson, J. R., Iravani, H., Clilverd, H. M., Sayer, C. D., Heppell, C. M., & Axmacher, J. C. (2017). Simulation of the hydrological impacts of climate change on a restored floodplain. Hydrological Sciences Journal, 62(15), 2482–2510. https://doi.org/10.1080/02626667.2017.1390316

    Article  Google Scholar 

  • Thompson, J. R., Laizé, C. L. R., Acreman, M. C., Crawley, A., & Kingston, D. G. (2021). Impacts of climate change on environmental flows in West Africa’s Upper Niger Basin and the Inner Niger Delta. Hydrology Research, 52(4), 958–974.

    Article  Google Scholar 

  • Tickner, D., Opperman, J. J., Abell, R., Acreman, M. C., Arthington, A. H., Bunn, S. E., et al. (2020). Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience, 70(4), 330–342. https://doi.org/10.1093/biosci/biaa002

    Article  Google Scholar 

  • Trenberth, K. E. (2015). Has there been a hiatus? Science, 349, 691–692.

    Article  CAS  Google Scholar 

  • Twisa, S., & Buchroithner, M. F. (2019). Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land, 8(9), 136.

    Article  Google Scholar 

  • Unique Identification Autority of India (UIDAI). (2023). https://myaadhaar.uidai.gov.in

  • Van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23, 450–464.

    Article  Google Scholar 

  • Veldkamp, T. I. E., Zhao, F., Ward, P. J., de Moel, H., Aerts, J. C. J. H., Schmied, H. M., et al. (2018). Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environmental Research Letters, 13(5), 055008. https://doi.org/10.1088/1748-9326/aab96f

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of earth’s ecosystems. Science, 277, 494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289(5477), 284–288.

    Article  CAS  Google Scholar 

  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561. https://doi.org/10.1038/nature09440

    Article  CAS  Google Scholar 

  • Walsh, M. E., Daniel, G., Shapouri, H., & Slinsky, S. P. (2003). Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environmental and Resource Economics, 24(4), 313–333. https://doi.org/10.1023/A:1023625519092

    Article  Google Scholar 

  • Wang, J. M., Zhang, J. R., & Feng, Y. (2019). Characterizing the spatial variability of soil particle size distribution in an underground coal mining area: an approach combining multi-fractal theory and geostatistics. CATENA, 176, 94–103.

    Article  Google Scholar 

  • Wang, Y., Xu, Y., Lei, C., Li, G., Han, L., Song, S., ... & Deng, X. (2016). Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960–2012. Atmospheric Research, 172, 196–205.

  • Warburton, M. L., Schulze, R. E., & Jewitt, G. P. (2012). Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology, 414, 118–135.

    Article  Google Scholar 

  • Webb, B. W., Clack, P. D., & Walling, D. E. (2003). Water–air temperature relationships in a Devon river system and the role of flow. Hydrological Processes, 17, 3069–3084.

    Article  Google Scholar 

  • Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London. Series b, Biological Sciences, 365, 2093–2106.

    Article  Google Scholar 

  • Xi, J., Zhao, M., Ge, Q., & Kong, Q. (2014). Changes in land use of a village driven by over 25 years of tourism: the case of Gougezhuang village, China. Land Use Policy, 40, 119–130.

    Article  Google Scholar 

  • Xia, G., Zhou, L., Freedman, J. M., Roy, S. B., Harris, R. A., & Cervarich, M. C. (2016). A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dynamics, 46, 2179–2196.

    Article  Google Scholar 

  • Yu, M., Li, Q., Hayes, M. J., Svoboda, M. D., & Heim, R. R. (2014). Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010. International Journal of Climatology, 34(3), 545–558.

    Article  CAS  Google Scholar 

  • Zhang, H., Jin, G., & Yu, Y. (2018). Review of river basin water resource management in China. Water, 10(4), 425.

    Article  Google Scholar 

  • Zhou, L., Tian, Y., Baidya Roy, S., Thorncroft, C., Bosart, L. F. & Hu, Y. (2012). Impacts of wind farms on land surface temperature. Nature Climate Changehttps://doi.org/10.1038/nclimate1505

  • Adiguzel, F., Bozdogan Sert, E., Dinc, Y., Cetin, M., Gungor, S., Yuka, P., ... & Vural, E. (2022). Determining the relationships between climatic elements and thermal comfort and tourism activities using the tourism climate index for urban planning: a case study of Izmir Province. Theoretical and Applied Climatology, 147(3), 1105–1120.

Download references

Acknowledgements

I owe sincere thanks to the management, secretary, and principal of PSG College of Arts and Science (Autonomous), Coimbatore, for providing all the facilities in the college to do the project work.

Author information

Authors and Affiliations

Authors

Contributions

Jeevitha Palanisamyb: investigation, data collection, formal analysis, visualization, writing—original draft. Dr. Varunprasath Krishnaraja*: supervision, conceptualization, final analysis, writing review, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Varunprasath Krishnaraj.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaraj, V., Palanisamy, J. Analyzing the Impact of Climate Data Using Geospatial Techniques on Land Use and Land Cover Changes in the Kaveri River Basin, Manmangalam Taluk, Karur District, Tamil Nadu. Water Air Soil Pollut 235, 168 (2024). https://doi.org/10.1007/s11270-024-06963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06963-3

Keywords

Navigation