Skip to main content

Advertisement

Log in

A Critical Review of Remote Sensing Methods for Inland Water Quality Monitoring: Progress, Limitations, and Future Perspectives

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pollution of water has emerged as one of the most important problems endangering aquatic ecosystems, water as a resource, and human health in recent years. Monitoring the water quality of inland water bodies dynamically and precisely is essential for taking the most effective and urgent steps. The geospatial approach can lessen the amount of work that has to be done in the field and in the laboratory to assess and map the current state of the water quality over a broad range of various scales (spatial and temporal). This investigation sheds light on critical methods for assessing and monitoring water quality, offering valuable insights that can benefit researchers, environmentalists, policymakers, and professionals in related fields. As discussed in this article, the application of multispectral remote sensing presents a powerful and efficient approach to gathering essential water quality data. By applying the knowledge and techniques outlined in this article, others can contribute to the protection and sustainable management of water bodies, helping to address the critical issue of water pollution and its impact on ecosystems and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  • Abdul Halim, M., Shahidul Islam, M., Sharmin, S., Mozzamel Haque, M., Sydur Rahman, M., Md Abdul Halim, C., Sharmin, S., & Hafizur Rahman, H. (2018). Assessment of water quality parameters in baor environment, Bangladesh: A review. International Journal of Fisheries and Aquatic Studies, 6(2), 259–263.

  • Abdullah, H. S. A., Mahdi, M. S. M., & Ibrahim, H. M. I. (2016). Water quality assessment models for Dokan Lake using Landsat 8 OLI satellite images. Journal of Zankoy Sulaimani - Part A, 19(3&4), 25–42. https://doi.org/10.17656/jzs.10630

  • AL-Fahdawi, A. A. H., Rabee, A. M., & Al-Hirmizy, S. M. (2015). Water quality monitoring of Al-Habbaniyah Lake using remote sensing and in situ measurements. Environmental Monitoring and Assessment, 187(6). https://doi.org/10.1007/s10661-015-4607-2

  • Al-Jassani, F. D., Al-Zubaidi, H. A. M., & Al-Mansori, N. J. (2022). Satellite-based statistical analysis of Hilla River water quality parameters. Iraq. Nature Environment and Pollution Technology, 21(5), 2315–2321. https://doi.org/10.46488/NEPT.2022.v21i05.027

    Article  CAS  Google Scholar 

  • Alparslan, E., Coşkun, H. G., & Alganci, U. (2010). An investigation on water quality of darlik dam drinking water using satellite images. The Scientific World Journal, 10, 1293–1306. https://doi.org/10.1100/tsw.2010.125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrzej Urbanski, J., Wochna, A., Bubak, I., Grzybowski, W., Lukawska-Matuszewska, K., Łącka, M., Śliwińska, S., Wojtasiewicz, B., & Zajączkowski, M. (2016). Application of Landsat 8 imagery to regional-scale assessment of lake water quality. International Journal of Applied Earth Observation and Geoinformation, 51, 28–36. https://doi.org/10.1016/j.jag.2016.04.004

    Article  ADS  Google Scholar 

  • Arya, F. K., & Zhang, L. (2015). Time series analysis of water quality parameters at Stillaguamish River using order series method. Stochastic Environmental Research and Risk Assessment, 29(1), 227–239. https://doi.org/10.1007/s00477-014-0907-2

    Article  Google Scholar 

  • Ashwin, K. R. N., Arulmozhi, S., Gopalan, A., Mageshkumar, P., Rangaraj, A., Panneerselvam, M., Nirmala Devi, B., Aravindhan, C., Prasath, E., & David Ladu, N. S. (2022). Correlation, regression analysis, and spatial distribution mapping of WQI for an urban Lake in Noyyal River Basin in the textile capital of India. Advances in Materials Science and Engineering, 2022. https://doi.org/10.1155/2022/3402951

  • Avdan, Z. Y., Kaplan, G., Goncu, S., & Avdan, U. (2019). Monitoring the water quality of small water bodies using high-resolution remote sensing data. ISPRS International Journal of Geo-Information, 8(12). https://doi.org/10.3390/ijgi8120553

  • Awange, J., & Kiema, J. (2019). Optical Remote Sensing. In Environmental Science and Engineering (Issue April). Singapore: Springer. https://doi.org/10.1007/978-3-030-03017-9_8

    Chapter  Google Scholar 

  • Barrett, D. C., & Frazier, A. E. (2016). Automated method for monitoring water quality using landsat imagery. Water (switzerland), 8(6), 1–14. https://doi.org/10.3390/W8060257

    Article  Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2(2), 161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Bi, S., Li, Y., Wang, Q., Lyu, H., Liu, G., Zheng, Z., Du, C., Mu, M., Xu, J., Lei, S., & Miao, S. (2018). Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR synergistic observations. Remote Sensing, 10(7). https://doi.org/10.3390/rs10071002

  • Bourouhou, I., & Salmoun, F. (2021). Sea water quality monitoring using remote sensing techniques: a case study in Tangier-Ksar Sghir coastline. Environmental Monitoring and Assessment, 193(9). https://doi.org/10.1007/s10661-021-09242-4

  • Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382. https://doi.org/10.1080/07438140509354442

    Article  Google Scholar 

  • Cao, J., Wen, X., Luo, D., & Tan, Y. (2022). Study on water quality inversion model of Dianchi Lake based on Landsat 8 data. Journal of Spectroscopy, 2022. https://doi.org/10.1155/2022/3341713

  • Cao, Q., Yu, G., & Qiao, Z. (2023). Application and recent progress of inland water monitoring using remote sensing techniques. Environmental Monitoring and Assessment, 195(1), 1–16. https://doi.org/10.1007/s10661-022-10690-9

    Article  Google Scholar 

  • Chawla, I., Karthikeyan, L., & Mishra, A. K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585(March), 124826. https://doi.org/10.1016/j.jhydrol.2020.124826

    Article  CAS  Google Scholar 

  • Chen, C., Tang, S., Pan, Z., Zhan, H., Larson, M., & Jönsson, L. (2007). Remotely sensed assessment of water quality levels in the Pearl River Estuary. China. Marine Pollution Bulletin, 54(8), 1267–1272. https://doi.org/10.1016/j.marpolbul.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Wang, J., Cao, X., Ran, H., Teng, D., Chen, J., He, X., & Zheng, X. (2021). Possibility of using multiscale normalized difference vegetation index data for the assessment of total suspended solids (TSS) concentrations in surface water: A specific case of scale issues in remote sensing. Environmental Research, 194. https://doi.org/10.1016/j.envres.2020.110636

  • Choo, J., Cherukuru, N., Lehmann, E., Paget, M., Mujahid, A., Martin, P., & Müller, M. (2022). Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: Ocean colour remote sensing observations and analysis. Biogeosciences, 19(24), 5837–5857. https://doi.org/10.5194/bg-19-5837-2022

    Article  ADS  Google Scholar 

  • Choubey, V. K. (1994). Monitoring water quality in reservoirs with IRS-1A-LISS-I. Water Resources Management, 8(2), 121–136. https://doi.org/10.1007/BF00872432

    Article  MathSciNet  Google Scholar 

  • Cracknell, A. P. (2018). The development of remote sensing in the last 40 years. International Journal of Remote Sensing, 39(23), 8387–8427. https://doi.org/10.1080/01431161.2018.1550919

    Article  ADS  Google Scholar 

  • Dekker, A. G., & Peters, S. W. M. (1993). The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the netherlands. International Journal of Remote Sensing, 14(5), 799–821. https://doi.org/10.1080/01431169308904379

    Article  ADS  Google Scholar 

  • Del Castillo, C. E., & Miller, R. L. (2008). On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sensing of Environment, 112(3), 836–844. https://doi.org/10.1016/j.rse.2007.06.015

    Article  ADS  Google Scholar 

  • DeLuca, N. M., Zaitchik, B. F., & Curriero, F. C. (2018). Can multispectral information improve remotely sensed estimates of total suspended solids? A statistical study in Chesapeake Bay. Remote Sensing, 10(9), 1–16. https://doi.org/10.3390/rs10091393

    Article  Google Scholar 

  • Ding, C., Pu, F., Li, C., Xu, X., Zou, T., & Li, X. (2020). Combining artificial neural networks with causal inference for total phosphorus concentration estimation and sensitive spectral bands exploration using MODIS. Water (Switzerland), 12(9). https://doi.org/10.3390/W12092372

  • Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., & Knaeps, E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment, 156, 157–168. https://doi.org/10.1016/j.rse.2014.09.020

    Article  ADS  Google Scholar 

  • Du, C., Li, Y., Wang, Q., Liu, G., Zheng, Z., Mu, M., & Li, Y. (2017). Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery. Environmental Science and Pollution Research, 24(36), 28079–28101. https://doi.org/10.1007/s11356-017-0305-7

    Article  PubMed  CAS  Google Scholar 

  • Du, C., Li, Y., Lyu, H., Liu, N., Zheng, Z., & Li, Y. (2020). Remote estimation of total phosphorus concentration in the Taihu Lake using a semi- analytical model. International Journal of Remote Sensing, 41(20), 7993–8013. https://doi.org/10.1080/01431161.2020.1767826

    Article  ADS  Google Scholar 

  • Du, C., Li, Y., Lyu, H., Shi, K., Liu, N., Yan, C., Pan, J., Guo, Y., & Li, Y. (2022). Characteristics of the total suspended matter concentration in the Hongze Lake during 1984–2019 based on Landsat data. Remote Sensing, 14(12), 2919. https://doi.org/10.3390/rs14122919

    Article  ADS  Google Scholar 

  • El Saadi, A. M., Yousry, M. M., & Jahin, H. S. (2014). Statistical estimation of Rosetta branch water quality using multi-spectral data. Water Science, 28(1), 18–30. https://doi.org/10.1016/j.wsj.2014.10.001

    Article  Google Scholar 

  • El-Alem, A., & Chokmani, K. (2022). A machine learning-based regional hybrid model for remote retrieving turbidity from Landsat imagery. IEEE Geoscience and Remote Sensing Letters, 19. https://doi.org/10.1109/LGRS.2021.3115986

  • Elhag, M., Gitas, I., Othman, A., Bahrawi, J., Psilovikos, A., & Al-Amri, N. (2021). Time series analysis of remotely sensed water quality parameters in arid environments, Saudi Arabia. Environment, Development and Sustainability, 23(2), 1392–1410. https://doi.org/10.1007/s10668-020-00626-z

    Article  Google Scholar 

  • Elhag, M., Gitas, I., Othman, A., Bahrawi, J., & Gikas, P. (2019). Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, Saudi Arabia. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030556

  • Ellyson, K., & Ecker, M. (2005). Remote sensing calibration of Casey Lake and Silver Lake. American Journal of Undergraduate Research, 4(1). https://doi.org/10.33697/ajur.2005.010

  • Felix, M. J., & Perez, G. J. (2022). Improved Rrs and turbidity retrieval from OLI images in complex inland waters: A study for Laguna De Bay. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(1), 67–75. https://doi.org/10.5194/isprs-annals-V-1-2022-67-2022

    Article  ADS  Google Scholar 

  • Gao, Y., Gao, J., Yin, H., Liu, C., Xia, T., Wang, J., & Huang, Q. (2015). Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 151, 33–43. https://doi.org/10.1016/j.jenvman.2014.11.036

    Article  PubMed  CAS  Google Scholar 

  • Gao, Z., Shen, Q., Wang, X., Peng, H., Yao, Y., Wang, M., Wang, L., Wang, R., Shi, J., Shi, D., & Liang, W. (2021). Spatiotemporal distribution of total suspended matter concentration in Changdang Lake based on in situ hyperspectral data and sentinel-2 images. Remote Sensing, 13(21). https://doi.org/10.3390/rs13214230

  • Garg, V., Aggarwal, S. P., & Chauhan, P. (2020). Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomatics, Natural Hazards and Risk, 11(1), 1175–1195. https://doi.org/10.1080/19475705.2020.1782482

    Article  Google Scholar 

  • Gernez, P., Lafon, V., Lerouxel, A., Curti, C., Lubac, B., Cerisier, S., & Barillé, L. (2015). Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (take5) experiment in the Loire and Gironde estuaries. Remote Sensing, 7(8), 9507–9528. https://doi.org/10.3390/rs70809507

    Article  ADS  Google Scholar 

  • Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors (Switzerland), 16(8). https://doi.org/10.3390/s16081298

  • Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Matta, E., & Brando, V. E. (2014). Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors (Switzerland), 14(12), 24116–24131. https://doi.org/10.3390/s141224116

    Article  ADS  CAS  Google Scholar 

  • Govedarica, M., & Jakovljevic, G. (2019). Monitoring spatial and temporal variation of water quality parameters using time series of open multispectral data. SPIE-Intl Soc Optical Eng, March, 55. https://doi.org/10.1117/12.2533708

  • Guzinski, R., Kass, S., Huber, S., Bauer-Gottwein, P., Jensen, I. H., Naeimi, V., Doubkova, M., Walli, A., & Tottrup, C. (2014). Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sensing, 6(8), 7819–7839. https://doi.org/10.3390/rs6087819

    Article  ADS  Google Scholar 

  • Ha, N. T. T., Thao, N. T. P., Koike, K., & Nhuan, M. T. (2017). Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a case study of Lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-Information, 6(9). https://doi.org/10.3390/ijgi6090290

  • Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., Tang, D., Lee, K. H., & Pun, L. (2019). Comparison of machine learning algorithms for retrieval of water quality indicators in case-ii waters: A case study of Hong Kong. Remote Sensing, 11(6). https://doi.org/10.3390/rs11060617

  • Hamylton, S., Silverman, J., & Shaw, E. (2013). The use of remote sensing to scale up measures of carbonate production on reef systems: a comparison of hydrochemical and census-based estimation methods. International Journal of Remote Sensing, 34(18), 6451–6465. https://doi.org/10.1080/01431161.2013.800654

    Article  ADS  Google Scholar 

  • Handcock, R. N., Gillespie, A. R., Cherkauer, K. A., Kay, J. E., Burges, S. J., & Kampf, S. K. (2006). Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales. Remote Sensing of Environment, 100(4), 427–440. https://doi.org/10.1016/j.rse.2005.07.007

    Article  ADS  Google Scholar 

  • Harkort, L., & Duan, Z. (2023). Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Water Research, 229(December 2022), 119478. https://doi.org/10.1016/j.watres.2022.119478

  • Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., Eloheimo, K., & Koponen, S. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Science of the Total Environment, 268(1–3), 107–121. https://doi.org/10.1016/S0048-9697(00)00688-4

    Article  ADS  PubMed  Google Scholar 

  • Hassan, G., Shaheen, M. E., & Taie, S. A. (2020). Prediction framework for water quality parameters monitoring via remote sensing. Proceedings - 2020 1st International Conference of Smart Systems and Emerging Technologies. SMART-TECH, 2020, 59–64. https://doi.org/10.1109/SMART-TECH49988.2020.00029

    Article  Google Scholar 

  • Hassan, G., Goher, M. E., Shaheen, M. E., & Taie, S. A. (2021a). Hybrid predictive model for water quality monitoring based on sentinel-2A L1C data. IEEE Access, 9, 65730–65749. https://doi.org/10.1109/ACCESS.2021.3075849

    Article  Google Scholar 

  • Hassan, M. M., Hassan, M. M., Akter, L., Rahman, M. M., Zaman, S., Hasib, K. M., Jahan, N., Smrity, R. N., Farhana, J., Raihan, M., & Mollick, S. (2021b). Efficient prediction of water quality index (WQI) using machine learning algorithms. Human-Centric Intelligent Systems, 1(3–4), 86. https://doi.org/10.2991/hcis.k.211203.001

    Article  Google Scholar 

  • He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-polluted inland water body through remote sensing - Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science and Engineering in China, 2(2), 163–171. https://doi.org/10.1007/s11783-008-0027-7

    Article  Google Scholar 

  • He, Q., Qiu, Y., Liu, H., Sun, X., Kang, L., Cao, L., Li, H., & Ai, H. (2017). New insights into the impacts of suspended particulate matter on phytoplankton density in a tributary of the Three Gorges Reservoir. China. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-13235-0

    Article  CAS  Google Scholar 

  • He, Y., Gong, Z., Zheng, Y., & Zhang, Y. (2021). Inland reservoir water quality inversion and eutrophication evaluation using bp neural network and remote sensing imagery: A case study of Dashahe Reservoir. Water (Switzerland), 13(20). https://doi.org/10.3390/w13202844

  • Hossain, A. K. M. A., Mathias, C., & Blanton, R. (2021). Remote sensing of turbidity in the Tennessee River using Landsat 8 satellite. Remote Sensing, 13(18), 1–24. https://doi.org/10.3390/rs13183785

    Article  Google Scholar 

  • Hossen, H., Mahmod, W. E., Negm, A., & Nakamura, T. (2022). Assessing water quality parameters in Burullus Lake using Sentinel-2 satellite images. Water Resources, 49(2), 321–331. https://doi.org/10.1134/S0097807822020087

    Article  CAS  Google Scholar 

  • Hu, H., Fu, X., Li, H., Wang, F., Duan, W., Zhang, L., & Liu, M. (2023). Prediction of lake chlorophyll concentration using the BP neural network and Sentinel-2 images based on time features. Water Science and Technology, 87(3), 539–554. https://doi.org/10.2166/wst.2023.019

    Article  PubMed  Google Scholar 

  • Huangfu, K., Li, J., Zhang, X., Zhang, J., Cui, H., & Sun, Q. (2020). Remote estimation of water quality parameters of medium-and small-sized inland rivers using Sentinel-2 imagery. Water (switzerland), 12(11), 1–18. https://doi.org/10.3390/w12113124

    Article  Google Scholar 

  • Hussein, N. M., & Assaf, M. N. (2020). Multispectral remote sensing utilization for monitoring chlorophyll-a levels in inland water bodies in Jordan. Scientific World Journal, 2020. https://doi.org/10.1155/2020/5060969

  • Imen, S., Chang, N., & Yang, Y. J. (2014). Monitoring spatiotemporal total organic carbon concentrations in Lake Mead with integrated data fusion and mining (IDFM) technique. 11th International Conference on Hydroinformatics HIC 2014, New York City, USA.

  • Jakovljevic, G., Govedarica, M., & Álvarez Taboada, F. (2018). Assessment of biological and physic chemical water quality parameters using Landsat 8 time series. SPIE-Intl Soc Optical Eng, 101. https://doi.org/10.1117/12.2513277

  • Jensen, J. R. (2014). Remote sensing of the environment: An earth resource perspective second edition. In Pearson Education Limited,Harlow, England (Vol. 1).

  • Jerry, R., Rija, R., Jean, R., Lahatra, R., & Fils, R. (2019). Modelling of lake water quality parameters by deep learning using remote sensing data. American Journal of Geographic Information System, 2019(6), 221–227. https://doi.org/10.5923/j.ajgis.20190806.01

    Article  Google Scholar 

  • Juhls, B., Matsuoka, A., Lizotte, M., Bécu, G., Overduin, P. P., El Kassar, J., Devred, E., Doxaran, D., Ferland, J., Forget, M. H., Hilborn, A., Hieronymi, M., Leymarie, E., Maury, J., Oziel, L., Tisserand, L., Anikina, D. O. J., Dillon, M., & Babin, M. (2022). Seasonal dynamics of dissolved organic matter in the Mackenzie Delta, Canadian arctic waters: Implications for ocean colour remote sensing. Remote Sensing of Environment, 283(September). https://doi.org/10.1016/j.rse.2022.113327

  • Karaska, M. A., Huguenin, R. L., Beacham, J. L., Wang, M. H., Jensen, J. R., & Kaufmann, R. S. (2004). AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina. Photogrammetric Engineering and Remote Sensing, 70(1), 125–133. https://doi.org/10.14358/PERS.70.1.125

  • Kavzoglu, T., & Goral, M. (2022). Google Earth engine for monitoring marine mucilage: Izmit Bay in Spring 2021. Hydrology, 9(8), 1–16. https://doi.org/10.3390/hydrology9080135

    Article  Google Scholar 

  • Kim, H. C., Son, S., Kim, Y. H., Khim, J. S., Nam, J., Chang, W. K., Lee, J. H., Lee, C. H., & Ryu, J. (2017). Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids. Marine Pollution Bulletin, 121(1–2), 425–434. https://doi.org/10.1016/j.marpolbul.2017.05.026

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. H., Son, S., Kim, H. C., Kim, B., Park, Y. G., Nam, J., & Ryu, J. (2020). Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Environment International, 134(November 2019), 105301. https://doi.org/10.1016/j.envint.2019.105301

  • Krishna Kumar, S., Hari Babu, S., Eswar Rao, P., Selvakumar, S., Thivya, C., Muralidharan, S., & Jeyabal, G. (2017). Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu. India. Applied Water Science, 7(5), 2533–2544. https://doi.org/10.1007/s13201-016-0447-7

    Article  ADS  CAS  Google Scholar 

  • Kumar, D. N., & Reshmidevi, T. V. (2013). Remote sensing applications in water resources. Journal of the Indian Institute of Science, 93(2), 163–188.

    Google Scholar 

  • Kutser, T. (2009). Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. International Journal of Remote Sensing, 30(17), 4401–4425. https://doi.org/10.1080/01431160802562305

    Article  ADS  Google Scholar 

  • Kwong, I. H. Y., Wong, F. K. K., & Fung, T. (2022). Automatic mapping and monitoring of marine water quality parameters in hong kong using Sentinel-2 image time-series and Google Earth engine cloud computing. Frontiers in Marine Science, 9(May), 1–18. https://doi.org/10.3389/fmars.2022.871470

    Article  ADS  Google Scholar 

  • Laili, N., Arafah, F., Jaelani, L. M., Subehi, L., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, A. (2015). Development of water quality parameter retrieval algorithms For estimating total suspended solids and chlorophyll-a concentration using Landsat-8 imagery at Poteran Island water. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(2W2), 55–62. 10.5194/isprsannals-II-2-W2-55-2015

  • Lehmann, M. K., Gurlin, D., Pahlevan, N., Alikas, K., Anstee, J., Balasubramanian, S. V., Barbosa, C. C. F., Binding, C., B., A., B., M., B., A., Cao, Z., Dekker, A. G., Drayson, N., Errera, R. M., Fernandez, V., Fichot, C. G., Gege, P., Giardino, Claudia, Gitelson, A. A., … Yue, L. (2023). GLORIA—A globally representative hyperspectral in situ dataset for optical sensing of water quality. Scientific Data, 1–14. https://doi.org/10.1038/s41597-023-01973-y

  • Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964

    Article  ADS  Google Scholar 

  • Lim, J., & Choi, M. (2015). Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental Monitoring and Assessment, 187(6), 1–17. https://doi.org/10.1007/s10661-015-4616-1

    Article  CAS  Google Scholar 

  • Lu, L., Gong, Z., Liang, Y., & Liang, S. (2022). Retrieval of chlorophyll-a concentrations of class II water bodies of inland lakes and reservoirs based on ZY1–02D satellite hyperspectral data. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081842

  • Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899. https://doi.org/10.1080/01431161.2010.512947

    Article  ADS  Google Scholar 

  • Matthews, M. W., Bernard, S., & Winter, K. (2010). Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sensing of Environment, 114(9), 2070–2087. https://doi.org/10.1016/j.rse.2010.04.013

    Article  ADS  Google Scholar 

  • Miao, S., Lyu, H., Wang, Q., Li, Y., Wu, Z., & Du, C. (2019). Estimation of terrestrial humic-like substances in inland lakes based on the optical and fluorescence characteristics of chromophoric dissolved organic matter (CDOM) using OLCI images. Ecological Indicators, 101(January), 399–409. https://doi.org/10.1016/j.ecolind.2019.01.039

    Article  CAS  Google Scholar 

  • Modabberi, A., Noori, R., Madani, K., Ehsani, A. H., Danandeh Mehr, A., Hooshyaripor, F., & Kløve, B. (2019). Caspian Sea is eutrophying: The alarming message of satellite data. Environmental Research Letters, 15(12). https://doi.org/10.1088/1748-9326/abc6d3

  • Mozafari, Z., Noori, R., Siadatmousavi, S. M., Afzalimehr, H., & Azizpour, J. (2023). Satellite-based monitoring of eutrophication in the earth’s largest transboundary lake. GeoHealth, 7(5), 1–15. https://doi.org/10.1029/2022GH000770

    Article  Google Scholar 

  • Murray, C., Larson, A., Goodwill, J., Wang, Y., Cardace, D., & Akanda, A. S. (2022). Water quality observations from space: A review of critical issues and challenges. Environments - MDPI, 9(10). https://doi.org/10.3390/environments9100125

  • Noori, R., Bateni, S. M., Saari, M., Almazroui, M., & Torabi Haghighi, A. (2022a). Strong warming rates in the surface and bottom layers of a Boreal Lake: Results from approximately six decades of measurements (1964–2020). Earth and Space Science, 9(2). https://doi.org/10.1029/2021EA001973

  • Noori, R., Woolway, R. I., Saari, M., Pulkkanen, M., & Kløve, B. (2022b). Six decades of thermal change in a pristine lake situated north of the Arctic Circle. Water Resources Research, 58(9), 1–12. https://doi.org/10.1029/2021WR031543

    Article  Google Scholar 

  • De Paul Obade, V., Lal, R., & Chen, J. (2013). Remote sensing of soil and water quality in agroecosystems. Water, Air, and Soil Pollution, 224(9). https://doi.org/10.1007/s11270-013-1658-2

  • Petus, C., Marieu, V., Novoa, S., Chust, G., Bruneau, N., & Froidefond, J. M. (2014). Monitoring spatio-temporal variability of the Adour River turbid plume (Bay of Biscay, France) with MODIS 250-m imagery. Continental Shelf Research, 74, 35–49. https://doi.org/10.1016/j.csr.2013.11.011

    Article  ADS  Google Scholar 

  • Pham, Q. B., Mohammadpour, R., Linh, N. T. T., Mohajane, M., Pourjasem, A., Sammen, S. S., Anh, D. T., & Nam, V. T. (2021). Application of soft computing to predict water quality in wetland. Environmental Science and Pollution Research, 28(1), 185–200. https://doi.org/10.1007/s11356-020-10344-8

    Article  PubMed  CAS  Google Scholar 

  • Pimwiset, W., Tungkananuruk, K., Rungratanaubon, T., Kullavanijaya, P., & Sillberg, C. V. (2022). Water turbidity determination by a satellite imagery-based mathematical equation for the Chao Phraya River. Environment and Natural Resources Journal., 20(3), 297–309. https://doi.org/10.32526/ennrj/20/202100237

    Article  Google Scholar 

  • Pompêo, M., Moschini-Carlos, V., Bitencourt, M. D., Sòria-Perpinyà, X., Vicente, E., & Delegido, J. (2021). Water quality assessment using Sentinel-2 imagery with estimates of chlorophyll a, Secchi disk depth, and cyanobacteria cell number: The Cantareira System reservoirs (São Paulo, Brazil). Environmental Science and Pollution Research, 28(26), 34990–35011. https://doi.org/10.1007/s11356-021-12975-x

    Article  PubMed  CAS  Google Scholar 

  • Potes, M., Costa, M. J., & Salgado, R. (2012). Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling. Hydrology and Earth System Sciences, 16(6), 1623–1633. https://doi.org/10.5194/hess-16-1623-2012

    Article  ADS  Google Scholar 

  • Qin, Z., Ruan, B., Yang, J., Wei, Z., Song, W., & Sun, Q. (2022). Long-term dynamics of chlorophyll-a concentration and its response to human and natural factors in Lake Taihu based on MODIS data. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142416874

  • Quang, N. H., Sasaki, J., Higa, H., & Huan, N. H. (2017). Spatiotemporal variation of turbidity based on landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water (Switzerland), 9(8). https://doi.org/10.3390/w9080570

  • Rango, A., Salomonson, V. V., McGinnis, D. F., & Wiesnet, D. R. (1974). New dimensions in satellite hydrology. Eos, Transactions American Geophysical Union, 55(7), 703–711. https://doi.org/10.1029/EO055i007p00703

    Article  ADS  Google Scholar 

  • Ravinashree, A., Sivapragasam, C., & Vasudevan, M. (2022). Developmental strategies for a water quality assessment model with limited datasets - A case study from River Bhavani, India. IOP Conference Series: Earth and Environmental Science, 1032(1). https://doi.org/10.1088/1755-1315/1032/1/012018

  • Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric Engineering and Remote Sensing, 69(6), 695–704. https://doi.org/10.14358/PERS.69.6.695

    Article  Google Scholar 

  • Saberioon, M., Brom, J., Nedbal, V., Souc̆ek, P., & Císar̆, P. (2020). Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecological Indicators, 113(February). https://doi.org/10.1016/j.ecolind.2020.106236

  • Seegers, B. N., Werdell, P. J., Vandermeulen, R. A., Salls, W., Stumpf, R. P., Schaeffer, B. A., Owens, T. J., Bailey, S. W., Scott, J. P., & Loftin, K. A. (2021). Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a. Remote Sensing of Environment, 266(April), 112685. https://doi.org/10.1016/j.rse.2021.112685

  • Shi, K., Zhang, Y., Zhu, G., Liu, X., Zhou, Y., Xu, H., Qin, B., Liu, G., & Li, Y. (2015). Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sensing of Environment, 164, 43–56. https://doi.org/10.1016/j.rse.2015.02.029

    Article  ADS  Google Scholar 

  • Silva, H. A. N., Naranjo, P. G. V., Rodrigues, L. P. S., De Araujo, D. M., & Pires, Y. P. (2020). Prediction of some physico-chemical parameters of water in Alton Reservoir, Suffolk, England. WSEAS Transactions on Environment and Development, 16, 119–131. https://doi.org/10.37394/232015.2020.16.12

  • Singh, A. (2003). Remote sensing applied to the detection of heavy metals in potable water sources. Multispectral and Hyperspectral Remote Sensing Instruments and Applications, 4897, 411. https://doi.org/10.1117/12.477686

    Article  ADS  CAS  Google Scholar 

  • Somvanshi, S., Kunwar, P., Singh, N. B., & Kachhwaha, T. S. (2011). Water turbidity assessment in part of Gomti River using high resolution Google Earth’s Quickbird satellite data. Dimensions and Directions of Geospatial Industry, 18–21.

  • Somvanshi, S., Kunwar, P., Singh, N. B., Shukla, S. P., & Pathak, V. (2012). Integrated remote sensing and GIS approach for water quality analysis of Gomti river, Uttar Pradesh. International Journal of Environmental Sciences, 3(1), 62–74.

    CAS  Google Scholar 

  • Song, K., Li, L., Li, S., Tedesco, L., Hall, B., & Li, L. (2012). Hyperspectral remote sensing of total phosphorus (TP) in three central Indiana water supply reservoirs. Water, Air, and Soil Pollution, 223(4), 1481–1502. https://doi.org/10.1007/s11270-011-0959-6

    Article  ADS  CAS  Google Scholar 

  • Sudheer, K. P., Chaubey, I., & Garg, V. (2006). Lake water quality assessment from landsat thematic mapper data using neural network: An approach to optimal band combination selection. Journal of the American Water Resources Association, 42(6), 1683–1695. https://doi.org/10.1111/j.1752-1688.2006.tb06029.x

    Article  ADS  Google Scholar 

  • Syariz, M. A., Jaelani, L. M., Subehi, L., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, A. (2015). Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(2W4), 87–90. https://doi.org/10.5194/isprsarchives-XL-2-W4-87-2015

  • Tian, S., Guo, H., Xu, W., Zhu, X., Wang, B., Zeng, Q., Mai, Y., & Huang, J. J. (2022). Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-022-23431-9

  • Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., & Nõges, T. (2016). First experiences in mapping lakewater quality parameters with sentinel-2 MSI imagery. Remote Sensing, 8(8). https://doi.org/10.3390/rs8080640

  • Topp, S. N., Pavelsky, T. M., Jensen, D., Simard, M., & Ross, M. R. V. (2020). Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water (switzerland), 12(1), 1–34. https://doi.org/10.3390/w12010169

    Article  CAS  Google Scholar 

  • Torres, R. B., & Blanco, A. C. (2021). Preliminary investigation on cpreliminary investigation on chlorophyll-a and total suspended matter concentration in Manila Bay using Himawari-8 AHI and Sentinel-3 OLCI C2RCC. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 46, Pp. 303–311). International Society for Photogrammetry and Remote Sensing, XLVI(November), 17–19. 10.5194/isprs-Archives-XLVI-4-W6-2021-303-2021

  • Torres-Bejarano, F., Arteaga-Hernández, F., Rodríguez-Ibarra, D., Mejía-Ávila, D., & González-Márquez, L. C. (2021). Water quality assessment in a wetland complex using Sentinel 2 satellite images. International Journal of Environmental Science and Technology, 18(8), 2345–2356. https://doi.org/10.1007/s13762-020-02988-3

    Article  CAS  Google Scholar 

  • Usali, N., & Ismail, M. H. (2010). Use of remote sensing and GIS in monitoring water quality. Journal of Sustainable Development, 3(3). https://doi.org/10.5539/jsd.v3n3p228

  • Vinogradova, N. T., & Ponte, R. M. (2012). Assessing temporal aliasing in satellite-based surface salinity measurements. Journal of Atmospheric and Oceanic Technology, 29(9), 1391–1400. https://doi.org/10.1175/JTECH-D-11-00055.1

    Article  ADS  Google Scholar 

  • Wang, X., Fu, L., & He, C. (2011). Applying support vector regression to water quality modelling by remote sensing data. International Journal of Remote Sensing, 32(23), 8615–8627. https://doi.org/10.1080/01431161.2010.543183

    Article  ADS  Google Scholar 

  • Wang, X., Zhang, F., & Ding, J. (2017). Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed. China. Scientific Reports, 7(1), 1–18. https://doi.org/10.1038/s41598-017-12853-y

    Article  ADS  CAS  Google Scholar 

  • Wang, M., Yao, Y., Shen, Q., Gao, H., Li, J., Zhang, F., & Wu, Q. (2021). Time-series analysis of surface-water quality in Xiong’an new area, 2016–2019. Journal of the Indian Society of Remote Sensing, 49(4), 857–872. https://doi.org/10.1007/s12524-020-01264-8

    Article  Google Scholar 

  • Wang, Y., He, X., Bai, Y., Tan, Y., Zhu, B., Wang, D., Ou, M., Gong, F., Zhu, Q., & Huang, H. (2022). Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery. Science of the Total Environment, 853(August), 158374. https://doi.org/10.1016/j.scitotenv.2022.158374

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wei, L., Zhang, Y., Huang, C., Wang, Z., Huang, Q., Yin, F., Guo, Y., & Cao, L. (2020). Inland lakes mapping for monitoring water quality using a detail/smoothing-balanced conditional random field based on landsat-8/levels data. Sensors (switzerland), 20(5), 1–18. https://doi.org/10.3390/s20051345

    Article  CAS  Google Scholar 

  • Werther, M., Odermatt, D., Simis, S. G. H., Gurlin, D., Lehmann, M. K., Kutser, T., Gupana, R., Varley, A., Hunter, P. D., Tyler, A. N., & Spyrakos, E. (2022). A Bayesian approach for remote sensing of chlorophyll-a and associated retrieval uncertainty in oligotrophic and mesotrophic lakes. Remote Sensing of Environment, 283(September), 113295. https://doi.org/10.1016/j.rse.2022.113295

    Article  Google Scholar 

  • Wu, C., Wu, J., Qi, J., Zhang, L., Huang, H., Lou, L., & Chen, Y. (2010). Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. International Journal of Remote Sensing, 31(10), 2309–2324. https://doi.org/10.1080/01431160902973873

    Article  ADS  Google Scholar 

  • Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., & Chen, F. (2022). A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081770

  • Yang, Z., Gong, C., Ji, T., Hu, Y., & Li, L. (2022). Water quality retrieval from ZY1–02D hyperspectral imagery in urban water bodies and comparison with Sentinel-2. Remote Sensing, 14(19). https://doi.org/10.3390/rs14195029

  • Zhang, L., Hu, Q., & Tang, Z. (2022). Using Sentinel-2 imagery and machine learning algorithms to assess the inundation status of Nebraska conservation easements during 2018–2021. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174382

  • Zhao, K., Wang, Q., Qian, S., & Li, F. (2023). Spatial and temporal distribution characteristics of antibiotics and heavy metals in the Yitong River basin and ecological risk assessment. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-31471-5

    Article  CAS  Google Scholar 

  • Zheng, Z., Li, Y., Guo, Y., Xu, Y., Liu, G., & Du, C. (2015). Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake. China. Remote Sensing, 7(10), 13975–13999. https://doi.org/10.3390/rs71013975

    Article  ADS  Google Scholar 

  • Zhou, X., Marani, M., Albertson, J. D., & Silvestri, S. (2017). Hyperspectral and multispectral retrieval of suspended sediment in shallow coastal waters using semi-analytical and empirical methods. Remote Sensing, 9(4). https://doi.org/10.3390/rs9040393

Download references

Acknowledgements

We wish to thank the Vellore Institute of Technology, Vellore, Tamil Nadu, India for their unending assistance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Porchelvan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghul, M., Porchelvan, P. A Critical Review of Remote Sensing Methods for Inland Water Quality Monitoring: Progress, Limitations, and Future Perspectives. Water Air Soil Pollut 235, 159 (2024). https://doi.org/10.1007/s11270-024-06957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06957-1

Keywords

Navigation