Skip to main content
Log in

The Influence of Pyrolysis Temperature on the Performance of Cotton Stalk Biochar for Hexavalent Chromium Removal from Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar has gained popularity as green adsorbent when dealing with hexavalent chromium ions in the water environment. Herein, we prepared cotton stalk biochar (CSB) at distinct pyrolysis temperatures, i.e., 300 °C, 400 °C, and 500 °C (denoted as CSB300, CSB400, and CSB500, respectively), using cotton stalks as biomass, and we investigated its impact on Cr (VI) removal. The characterization results based on SEM–EDS, BET, CHN, XRD, and FTIR analysis showed that the surface area, surface morphology, and elemental and functional group composition of CSB were considerably influenced by pyrolysis temperature. Despite having the lowest surface area, CSB500 presented superior adsorption performance. Batch sorption experiments with Cr (VI) solutions (20 mg/L) showed the optimal removal conditions to be pH (2), contact time (2 h), and biochar dosage (3 g/L). Adsorption kinetics and isotherms were well defined by the Pseudo second order and Freundlich model. The thermodynamic studies showed the spontaneous and endothermic nature of the sorption process. The potential Cr (VI) removal mechanism mainly involved electrostatic attraction followed by Cr (VI) reduction to Cr (III) and complexation. Regeneration studies showed that the reusability aspect of the biochar could be improved, while the selected interfering ions had an insignificant effect on CSB500 adsorption capacity. In general, the current study's findings may provide mechanistic insights into the fate, mobility, and removal of Cr (VI) species in aquatic environment using biochar materials to wide range of environmental scholars.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No associated data was used for the research described in the article.

References

  • Abshirini, Y., Foroutan, R., & Esmaeili, H. (2019). Cr(VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina–christi leaf. Materials Research Express, 6, 045607.

    Article  ADS  Google Scholar 

  • Ai, T., Jiang, X., Liu, Q., Lv, L., & Wu, H. (2019). Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water: Kinetics, isotherms, and mechanism studies. Bioresource Technology, 273, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Al Afif, R., Anayah, S. S., & Pfeifer, C. (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy, 147, 2250–2258.

    Article  CAS  Google Scholar 

  • Al-Homaidan, A. A., Al-Qahtani, H. S., Al-Ghanayem, A. A., Ameen, F., & Ibraheem, I. B. M. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences, 25, 1733–1738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

    Article  PubMed  CAS  Google Scholar 

  • Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593–597.

    Article  PubMed  Google Scholar 

  • Anwar, S, Shaukat, F, Hussain, Z. (2010). Impact of trade liberalization on export of cotton from pakistan: A time series analysis. Sarhad Journal of Agriculture 26.

  • Arabi, Z., Rinklebe, J., El-Naggar, A., Hou, D., Sarmah, A. K., & Moreno-Jiménez, E. (2021). (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environmental Pollution, 286, 117199.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, S., & Nishat, A. M. (2021). Impacts of tanneries wastewater on the vicinal flora of Sheikhupura and Kasur, Pakistan. Ovidius University Annals of Chemistry, 32, 90–97.

    Article  CAS  Google Scholar 

  • Chandra, S., & Bhattacharya, J. (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. Journal of Cleaner Production, 215, 1123–1139.

    Article  CAS  Google Scholar 

  • Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology, 107, 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Cherdchoo, W., Nithettham, S., & Charoenpanich, J. (2019). Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere, 221, 758–767.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Choi, Y.-K., & Kan, E. (2019). Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere, 218, 741–748.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Choudhary, B., & Paul, D. (2018). Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. Journal of Environmental Chemical Engineering, 6, 2335–2343.

    Article  CAS  Google Scholar 

  • Dahiya, A., Bhardwaj, A., Rani, A., Arora, M., & Babu, J. N. (2023). Reduced and oxidized rice straw biochar for hexavalent chromium adsorption: Revisiting the mechanism of adsorption. Heliyon, 9, e21735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72, 243–248.

    Article  CAS  Google Scholar 

  • Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., Li, Z., Yi, W., Li, Y., Zhang, P., Zhang, A., & Wang, L. (2021). Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms. Journal of Environmental Chemical Engineering, 9, 105602.

    Article  CAS  Google Scholar 

  • Gazulla, M. F., Rodrigo, M., Orduña, M., & Ventura, M. J. (2016). Determination of organic oxygen in petroleum cokes and coals. Microchemical Journal, 126, 538–544.

    Article  CAS  Google Scholar 

  • Guo, H., Bi, C., Zeng, C., Ma, W., Yan, L., Li, K., & Wei, K. (2018). Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. Journal of Molecular Liquids, 249, 629–636.

    Article  CAS  Google Scholar 

  • Guo, X., Liu, A., Lu, J., Niu, X., Jiang, M., Ma, Y., Liu, X., & Li, M. (2020). Adsorption mechanism of hexavalent chromium on biochar: Kinetic, thermodynamic, and characterization studies. ACS Omega, 5, 27323–27331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, V. K., Pathania, D., Agarwal, S., & Sharma, S. (2013). Removal of Cr(VI) onto Ficus carica biosorbent from water. Environmental Science and Pollution Research, 20, 2632–2644.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X.-j, Wang, J.-s, Liu, Y.-g, Li, X., Zeng, G.-m, Bao, Z.-l, Zeng, X.-x, Chen, A.-w, & Long, F. (2011). Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185, 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Imran, M., Khan, Z. U. H., Iqbal, M. M., Iqbal, J., Shah, N. S., Munawar, S., Ali, S., Murtaza, B., Naeem, M. A., & Rizwan, M. (2020). Effect of biochar modified with magnetite nanoparticles and HNO(3) for efficient removal of Cr(VI) from contaminated water: A batch and column scale study. Environmental Pollution, 261, 114231.

    Article  PubMed  CAS  Google Scholar 

  • Jamil, U., Zeeshan, M., Khan, S. R., & Saeed, S. (2023). Synthesis and two-step KOH based activation of porous biochar of wheat straw and waste tire for adsorptive exclusion of chromium (VI) from aqueous solution; thermodynamic and regeneration study. Journal of Water Process Engineering, 53, 103892.

    Article  Google Scholar 

  • Kerur, S. S., Bandekar, S., Hanagadakar, M. S., Nandi, S. S., Ratnamala, G. M., & Hegde, P. G. (2021). Removal of Hexavalent Chromium-Industry Treated Water And Wastewater: A review. Materials Today: Proceedings, 42, 1112–1121.

    CAS  Google Scholar 

  • Kim, P., Johnson, A., Edmunds, C. W., Radosevich, M., Vogt, F., Rials, T. G., & Labbé, N. (2011). Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy & Fuels, 25, 4693–4703.

    Article  CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y. B., & Naidu, R. (2016). Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Process Safety and Environmental Protection, 100, 173–182.

    Article  CAS  Google Scholar 

  • Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., & Li, K. (2023). Efficient removal of both heavy metal ion and dyes from wastewater using magnetic response adsorbent of block polymer brush-grafted N-doped biochar. Chemosphere, 340, 139811.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Liu, Q., Guo, L., Zhang, Y., Lou, Z., Wang, Y., & Qian, G. (2013). Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technology, 141, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.-J., Fan, W.-Z., Pan, H.-H., Wang, C.-W., Qian, J., & Zhao, Q.-Z. (2017). Fabrication of “petal effect” surfaces by femtosecond laser-induced forward transfer. Chemical Physics Letters, 667, 20–24.

    Article  ADS  CAS  Google Scholar 

  • Liang, M., Ding, Y., Zhang, Q., Wang, D., Li, H., & Lu, L. (2020). Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse. Scientific Reports, 10, 21473.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Z., Niu, W., Chu, H., Zhou, T., Niu, Z. (2018). Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13.

  • Ma, Y., Liu, W.-J., Zhang, N., Li, Y.-S., Jiang, H., & Sheng, G.-P. (2014). Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169, 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Ma, F., Zhao, B., & Diao, J. (2019). Synthesis of magnetic biochar derived from cotton stalks for the removal of Cr(VI) from aqueous solution. Water Science and Technology, 79, 2106–2115.

    Article  PubMed  CAS  Google Scholar 

  • Makavana, J, Sarsavadia, P, Chauhan, P, (2020). Effect of pyrolysis temperature and residence time on bio-char obtained from pyrolysis of shredded cotton stalk. International Research Journal of Pure and Applied Chemistry 10–28.

  • Masuku, M., Nure, J. F., Atagana, H. I., Hlongwa, N., & Nkambule, T. T. I. (2024). Advancing the development of nanocomposite adsorbent through zinc-doped nickel ferrite-pinecone biochar for removal of chromium (VI) from wastewater. Science of the Total Environment, 908, 168136.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Mdlovu, N. V., Lin, K.-S., Chen, Z.-W., Liu, Y., & Mdlovu, N. B. (2020). Treatment of simulated chromium-contaminated wastewater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 108, 92–101.

    Article  CAS  Google Scholar 

  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188, 319–333.

    Article  PubMed  CAS  Google Scholar 

  • Mortazavian, S., An, H., Chun, D., & Moon, J. (2018). Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies. Chemical Engineering Journal, 353, 781–795.

    Article  CAS  Google Scholar 

  • Nassar, M. M., & MacKay, G. (1984). Mechanism of thermal decomposition of lignin. Wood and Fiber Science 441–453.

  • Neelam, A., Alamgir, A., & Kanwal, H. (2018). Determination of chromium in the tannery wastewater, Korangi, Karachi. International Journal of Environmental Sciences & Natural Resources, 15, 122–125.

    Article  Google Scholar 

  • Othmani, A., Magdouli, S., Senthil Kumar, P., Kapoor, A., Chellam, P. V., & Gökkuş, Ö. (2022). Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environmental Research, 204, 111916.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Rafique, M. I., Usman, A. R. A., Ahmad, M., & Al-Wabel, M. I. (2021). Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere, 266, 129198.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, A., & Zia, A. (2020). Appraisal of chromium contents from different tanneries and drains of sialkot. Pakistan Journal of Scientific & Industrial Research Series a: Physical Sciences, 63, 112–117.

    Article  CAS  Google Scholar 

  • Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2, 253–285.

    Article  ADS  Google Scholar 

  • Samuel Olugbenga, O., Goodness Adeleye, P., Blessing Oladipupo, S., Timothy Adeleye, A., & Igenepo John, K. (2024). Biomass-derived biochar in wastewater treatment- a circular economy approach. Waste Management Bulletin, 1, 1–14.

    Article  Google Scholar 

  • Shakya, A., & Agarwal, T. (2019). Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of Molecular Liquids, 293, 111497.

    Article  CAS  Google Scholar 

  • Shen, Y.-S., Wang, S.-L., Tzou, Y.-M., Yan, Y.-Y., & Kuan, W.-H. (2012). Removal of hexavalent Cr by coconut coir and derived chars – The effect of surface functionality. Bioresource Technology, 104, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Sikder, M. T., Kikuchi, T., Suzuki, J., Hosokawa, T., Saito, T., & Kurasaki, M. (2013). Removal of cadmium and chromium ions using modified α, β, and γ-cyclodextrin polymers. Separation Science and Technology, 48, 587–597.

    Article  CAS  Google Scholar 

  • Sinha, R., Kumar, R., Abhishek, K., Shang, J., Bhattacharya, S., Sengupta, S., Kumar, N., Singh, R. K., Mallick, J., Kar, M., & Sharma, P. (2022a). Single-step synthesis of activated magnetic biochar derived from rice husk for hexavalent chromium adsorption: Equilibrium mechanism, kinetics, and thermodynamics analysis. Groundwater for Sustainable Development, 18, 100796.

    Article  Google Scholar 

  • Sinha, R., Kumar, R., Sharma, P., Kant, N., Shang, J., & Aminabhavi, T. M. (2022b). Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. Journal of Environmental Management, 317, 115356.

    Article  PubMed  CAS  Google Scholar 

  • Song, W., Gao, B., Zhang, T., Xu, X., Huang, X., Yu, H., & Yue, Q. (2015). High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresource Technology, 190, 550–557.

    Article  PubMed  CAS  Google Scholar 

  • Tański, T., Matysiak, W., Krzemiński, Ł, Jarka, P., & Gołombek, K. (2017). Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods. Applied Surface Science, 424, 184–189.

    Article  ADS  Google Scholar 

  • Tariq, M. A., Nadeem, M., Iqbal, M. M., Imran, M., Siddique, M. H., Iqbal, Z., Amjad, M., Rizwan, M., & Ali, S. (2020). Effective sequestration of Cr (VI) from wastewater using nanocomposite of ZnO with cotton stalks biochar: Modeling, kinetics, and reusability. Environmental Science and Pollution Research, 27, 33821–33834.

    Article  PubMed  CAS  Google Scholar 

  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/technology, 19, 191–215.

    Article  CAS  Google Scholar 

  • Tong, X.-j, Li, J.-y, Yuan, J.-h, & Xu, R.-k. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172, 828–834.

    Article  CAS  Google Scholar 

  • Tytłak, A., Oleszczuk, P., & Dobrowolski, R. (2015). Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environmental Science and Pollution Research, 22, 5985–5994.

    Article  PubMed  Google Scholar 

  • Usman, A. R. A., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., & Al-Wabel, M. I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis, 115, 392–400.

    Article  CAS  Google Scholar 

  • Wang, S.-y, Tang, Y.-k, Li, K., Mo, Y.-y, Li, H.-f, & Gu, Z.-q. (2014). Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology, 174, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Wu, H., Sárossy, Z., Dong, C., & Glarborg, P. (2017). Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass. Fuel, 197, 422–432.

    Article  CAS  Google Scholar 

  • Wang, B., Li, F., & Wang, L. (2020a). Enhanced hexavalent chromium (Cr(VI)) removal from aqueous solution by Fe–Mn oxide-modified cattail biochar: Adsorption characteristics and mechanism. Chemistry and Ecology, 36, 138–154.

    Article  Google Scholar 

  • Wang, Z., Shu, X., Zhu, H., Xie, L., Cheng, S., & Zhang, Y. (2020b). Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments. Environmental Technology, 41, 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Zhang, M., Lv, Q. (2019). Removal efficiency and mechanism of Cr(VI) from aqueous solution by maize straw biochars derived at different pyrolysis temperatures. Water 11.

  • Xiao, X., Chen, Z., & Chen, B. (2016). H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Scientific Reports, 6, 22644.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, D., Sun, T., Jia, H., Sun, Y., & Zhu, X. (2022). The performance and mechanism of Cr(VI) adsorption by biochar derived from Potamogeton crispus at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 167, 105662.

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, Y., Wang, G., Yang, Z., Xian, J., Yang, Y., Li, T., Pu, Y., Jia, Y., Li, Y., Cheng, Z., Zhang, S., & Xu, X. (2021). Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. Journal of Environmental Chemical Engineering, 9, 105407.

    Article  CAS  Google Scholar 

  • Yin, R., Liu, R., Mei, Y., Fei, W., & Sun, X. (2013). Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel, 112, 96–104.

    Article  CAS  Google Scholar 

  • Yusuff, A. S., Lala, M. A., Thompson-Yusuff, K. A., & Babatunde, E. O. (2022). ZnCl2-modified eucalyptus bark biochar as adsorbent: Preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. South African Journal of Chemical Engineering, 42, 138–145.

    Article  Google Scholar 

  • Zhang, J., Chen, S., Zhang, H., & Wang, X. (2017). Removal behaviors and mechanisms of hexavalent chromium from aqueous solution by cephalosporin residue and derived chars. Bioresource Technology, 238, 484–491.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., & Chen, Z. (2018a). Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresource Technology, 256, 1–10.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Zhang, X., Zhang, L., & Li, A. (2018b). Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. Journal of Environmental Management, 206, 989–998.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Zhou, D., Lu, L., Zhang, M., Lü, T., Huang, J., Zhao, H., Zhou, J., & Rinklebe, J. (2023). Preferential, synergistic sorption and reduction of Cr(VI) from chromium–rhodamine B mixed wastewater by magnetic porous biochar derived from wasted Myriophyllum aquaticum biomass. Environmental Pollution, 327, 121593.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, S.-X., Ta, N., Wang, X.-D. (2017). Effect of Temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material, Energies.

  • Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24, 1617–1629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong, Z., Yu, G., Mo, W., Zhang, C., Huang, H., Li, S., Gao, M., Lu, X., Zhang, B., & Zhu, H. (2019). Enhanced phosphate sequestration by Fe(iii) modified biochar derived from coconut shell. RSC Advances, 9, 10425–10436.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Hu, X., Jiang, L., Ding, Y., Liu, S., & Huang, X. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ex-Principal SCEE (Dr. Tariq Mahmood) for his support in the purchase of pyrolysis reactor setup.

Funding

This research was funded by NUST Research Dte recurring budget year 2021–22 under head Project Proposal with grant number “NUST-22–41-46”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Inam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 662 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, U., Inam, M.A. The Influence of Pyrolysis Temperature on the Performance of Cotton Stalk Biochar for Hexavalent Chromium Removal from Wastewater. Water Air Soil Pollut 235, 114 (2024). https://doi.org/10.1007/s11270-024-06922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06922-y

Keywords

Navigation