Skip to main content
Log in

Biosorption of a Leather Dye (Dycem TTO) onto Banana Peel: Characterization, Isotherm, Kinetic, Thermodynamic, and Mechanism Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Banana peel (BP), a by-product of the fruit processing industry that is widely available, has been applied in this study as an effective biomaterial for the removal of Black Dycem TTO (DTTO) dye from aqueous solution. X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and point of zero charge (pHpzc) have all been used to characterize the biosorbent. Large active groups (like OH, NH, and C=O) on the BP surface are observed by FTIR analysis. It was discovered that BP’s BET surface area was 35.4 m2 g−1. SEM results showed a rough and a smoothing surface before and after dye biosorption, respectively. The optimum conditions for pH, BP amount and DTTO concentration were found to be 2, 0.005 g and 10 mg L−1, respectively. Under these conditions, removal efficiency was found to be 80.8%. The Langmuir isotherm provided a better description of the biosorption of DTTO on BP. The maximum monolayer adsorption capacity was found to be 54.34 mg g−1 at 25 °C. The kinetic studies disclosed pseudo-second-order for the studied biomaterial. The thermodynamic studies disclosed favorable, spontaneous, and exothermic processes. Consequently, this work showed that DTTO could be removed using low-cost material waste under appropriate conditions through an environmentally friendly process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article, and its supplementary information are available by request.

References

  • Abdel-khalek, M. A., Abdel-Rahmen, M. K., & Francis, A. A. (2017). Exploring the adsorption behavior of cationic and anionic dyes on industrial wasteshells of egg. Journal of Environmental Chemical Engineering, 7, 319–327.

    Article  Google Scholar 

  • Afolabi, O. F., Musonge, P., & Bakare, B. F. (2021). Bio-sorption of a bi-solute system of copper and lead ions onto banana peels : Characterization and optimization. Journal of Environmental Health Science and Engineering, 19, 613–624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmadi, S., & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9, 106010.

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use ofcellulose based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Armagan, B., & Toprak, F. (2014). Using pistachio shell for Remazol Red removal from aqueoussolutions : Equilibrium, kinetics and thermodynamics. Desalination and Water Treatment, 56, 136–145.

    Article  Google Scholar 

  • Baccar, R. (2013). Removal of water pollutants by adsorption on activated carbon prepared from olive-waste cakes and by biological treatment using ligninolytic fungi (p. 252). Doctorat thesis. Universitat de Barcelona.

  • Bagherian, G., Nemati, E., Chamjangali, M. A., & Ashrafi, M. (2021). Removal of lead ions from using functionalized pinecone powder. Journal of the Iranian Chemical Society, 18, 2369–2379.

    Article  CAS  Google Scholar 

  • Bediako, J. K., Sarkar, A. K., Lin, S., Zhao, Y., Song, M. H., Choi, J. W., Cho, C. W., & Yun, Y. S. (2019). Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. Waste Management, 89, 141–153.

  • Cardoso, N. F., Pinto, R. B., Lima, E. C., Calvete, T., Amavisca, C. V., Royer, B., Cunha, M. L., Fernandes, T. H. M., & Pinto, I. S. (2011). Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 269, 92–103.

    Article  CAS  Google Scholar 

  • Collivignarelli, M. C., Abbà, A., Miino, M. C., & Damiani, S. (2019). Treatments for color removal from water. Journal of Environmental Management, 236, 727–745.

    Article  PubMed  CAS  Google Scholar 

  • do Nascimento, G. E., Campos, N. F., da Silva, J. J., Barbosa, C. M., & Duarte, M. M. (2015). Adsorption of anionic dyes from an aqueous solution by banana peel and green coconut mesocarp. Desalination and Water Treatment, 57(30), 14093–14108. https://doi.org/10.1080/19443994.1063012

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). Uber dieadsorption ilosungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Ghibate, R., Senhaji, O., & Taoui, R. (2021). Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Studies in Chemical and Environmental Engineering, 3, 100078.

    Article  CAS  Google Scholar 

  • Han, R. P., Ding, D. D., Xu, Y. F., Zou, W. H., Wang, Y. F., Li, Y. F., & Zou, L. N. (2008). Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresource Technology, 99, 2938–2946.

    Article  PubMed  CAS  Google Scholar 

  • Hashem, A. H., Saied, E., & Hasanin, M. S. (2020). Green and ecofriendly bio-removal of methyleneblue dye from aqueous solution using biologically activated banana peel waste. Sustainable Chemistry and Pharmacy, 18, 100333.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115–124.

    Article  CAS  Google Scholar 

  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments : Possible approaches. J EnvironManage, 182, 351–366.

    CAS  Google Scholar 

  • Khalfaoui, A. (2012) EtudeExpérimentale de L’élimination de PolluantsOrganiques parAdsorption sur des MatériauxNaturels : Application aux Peaux d’Orange et de Banane. p 180. Thèse de doctorat. Fac Sci Ing, Algérie.

  • Khalfaoui, A., Meniai, A. H., & Derbal, K. (2012). Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia, 19, 286–295.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Zur theorie der sogenannten adsorption gel? ster stoffe,” Kungliga Svenska Vetenskapsakademiens. Handlingar, Band 24, 1–39.

  • Langmuir, I. (1918). The constitution and fundamental properties of solids and liquids. The Journal of the American Chemical Society, 40, 1361.

    Article  CAS  Google Scholar 

  • Li, J., Fan, Q., Wu, Y., Wang, X., Chen, C., & Tang, Z. (2016). Magnetic polydopamine decorated with Mg–Al LDH nanoflakes as a novel biobased adsorbent for simultaneous removal of potentially toxic metals and anionic dyes. Journal of Materials Chemistry A, 4, 1737–1746.

    Article  CAS  Google Scholar 

  • Liu, R. L., Liu, Y., Zhou, X. Y., Zhang, Z. Q., Zhang, J., & Dang, F. Q. (2014). Biomass-derived highly porous functional fabricated by using a free-standing template for efficient removal of methylene blue. Bioresource Technology, 154, 138–147.

    Article  PubMed  CAS  Google Scholar 

  • Mohamad, D. F., Osman, N. S., Nazri, M. K. H. M., Mazlan, A. A., Hanafi, M. F., Esa, Y. A. M., Rafi, M. I. I. M., Zailani, M. N., Rahman, N. N., Abd Rahman, A. H., & Sapawe, N. (2019). Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution. Materilas Today: Proceeding, 19, 1119–1125.

  • Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation. An overview, AN Overv. Journal of Scientific and Industrial Research, 69, 323–329.

    CAS  Google Scholar 

  • Mondal, N. K., & Roy, A. (2018). Potentiality of a fruit peel (banana peel) toward abatement of fluoride from synthetic and underground water samples collected from fluoride affected villages of Birbhum district. Applied Water Science, 8, 90.

    Article  ADS  Google Scholar 

  • Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D. S. (2018a). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using banana peel powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D. S. (2018b). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using banana peel powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Nejadshafiee, V., & Islami, M. R. (2020). Correction to Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine. Environmental Science and Pollution Research, 27, 1625–1639.

    Article  PubMed  CAS  Google Scholar 

  • Oyewo, O. A., Onyango, M. S., & Wolkersdorfer, C. (2016). Application of banana peels nanosorbent for the removal of radioactive minerals from real minewater. Journal of Environmental Radioactivity, 164, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass flyash. Journal of Hazardous Materials, 153(3), 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  • Piol, M. N., Dickerman, C., Ardanza, M. P., Saralegui, A., & Boeykens, S. P. (2021). Simultaneous removal of chromate and phosphate using different operational combinations for their adsorption on dolomite and banana peel. Journal of Environmental Management, 288, 112463.

    Article  PubMed  CAS  Google Scholar 

  • Scheufele, F. B., Staudt, J., Ueda, M. H., Caroline, R., Steffen, V., Borba, C. E., M´odenes, A. N., & Kroumov, A. D. (2020). Biosorption of direct black dye by cassava root husks: Kinetics, equilibrium, thermodynamics and mechanism assessment. Journal of Environmental Chemical Engineering, 8, 103533.

    Article  CAS  Google Scholar 

  • Stavrinou, A., Aggelopoulos, C. A., & Tsakiroglou, C. D. (2018). Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool. Journal of Environmental Chemical Engineering, 6, 6958–6970.

  • Tang, S., Xia, D. S., Yao, Y., Chen, T. Y., Sun, J., Yin, Y. J., Shen, W., & Peng, Y. X. (2019). Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. Journal of Colloid and Interface Science, 554, 682–691.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Thomas, B., Shilpa, E. P., & Alexander, L. K. (2021). Role of functional groups and morphology on the pH-dependent adsorption of a cationic dye using banana peel, orange peel, and neem leaf bio-adsorbents. Emergent Materials, 4, 1479–1487.

    Article  CAS  Google Scholar 

  • Thuan, T. V., Phuong Quynh, B. T., Nguyen, T. D., Ho, T. V. T., & Long Bach, L. G. (2017). Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces, 6, 209–217.

  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Hakimilbrahim, M., Tan, K. B., Gholami, Z., & Amouzga, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater : A review. Carbohydrate Polymers, 113, 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Ning, H. M., Hu, N., Huang, K. Y., Weng, S. Y., Wu, X. P., Wu, L. G., & Liu, J. A. (2019). Preparation and characterization of graphene oxide/silk for dye and heavy metal adsorption. Composites. Part B, Engineering, 163, 716–722.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., & Hubicki, Z. (2009). Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. Journal of Hazardous Materials, 164, 502–509.

    Article  PubMed  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solutions. Journal of the Sanitary Engineering Division, American Society of Civil Engineers, 89, 31–60.

  • Yao, X., Ji, L., Guo, J., Ge, S., Lu, W., Chen, Y., Cai, L., Wang, Y., & Song, W. (2020). An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresource Technology, 318, 124082.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, R., Wang, Y., Li, X., Sun, B. L., & Wang, C. (2015). Synthesis of β-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue. ACS Applied Materials & Interfaces, 7, 26649–26657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Chaari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, M., Chaari, I. & Medhioub, M. Biosorption of a Leather Dye (Dycem TTO) onto Banana Peel: Characterization, Isotherm, Kinetic, Thermodynamic, and Mechanism Studies. Water Air Soil Pollut 235, 119 (2024). https://doi.org/10.1007/s11270-024-06905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06905-z

Keywords

Navigation