Skip to main content
Log in

Optimization of Domestic Wastewater Treatment Using Ferric Chloride Coagulant: Physicochemical Analysis and Impedance Spectroscopy Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The study investigates the effectiveness of Ferric Chloride as a coagulant for removing pollutants from domestic wastewater in El Jadida, Morocco. It analyzes various parameters, including Total Suspended Solids (TSS), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), pH levels, and heavy metals. The study combines conventional methods with impedance spectroscopy to monitor the process, and an equivalent circuit model is developed to correlate theoretical factors with empirical data. The study reveals that a concentration of 1000 mg/L of Ferric Chloride is optimal for effective treatment, significantly reducing TSS, BOD, and COD levels. However, higher concentrations show diminishing returns. The study also highlights the presence of heavy metals exceeding Moroccan standards in the wastewater, emphasizing the need for proper treatment. The impedance analysis elucidates the relaxation processes associated with the coagulation reaction and the migration/agglomeration of flocs. The analysis suggests that below 1000 mg/L, more Ferric Chloride is required for effective coagulation, while above 1000 mg/L, overcoagulation may occur. Complex conductivity analysis confirms the presence of two distinct relaxation processes in the samples. The equivalent circuit model accurately describes the electrical spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abdel-Fatah, M. A., Hawash, S. I., & Shaarawy, H. H. (2021). Cost-effective clean electrochemical preparation of ferric chloride and its applications. Egyptian Journal of Chemistry, 64(7), 3841–3851. https://doi.org/10.21608/ejchem.2021.75921.3717

    Article  Google Scholar 

  • Al Jadabi, N., Laaouan, M., Mabrouki, J., & El Hajjaji, S. (2020). Study of the efficacy of coagulation-flocculation process in domestic wastewater treatment plant (WWTP) from the City of Hattane (MOROCCO). Journal of Advanced Research in Dynamical and Control Systems, 12(7), 147–157. https://doi.org/10.5373/JARDCS/V12I7/20201995

    Article  Google Scholar 

  • Amiri, M., Salavati-Niasari, M., Akbari, A., & Gholami, T. (2017). Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. International Journal of Hydrogen Energy, 42(39), 24846–24860. https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  CAS  Google Scholar 

  • Badawy, M. I., & Ali, M. E. M. (2006). Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 136(3), 961–966. https://doi.org/10.1016/j.jhazmat.2006.01.042

    Article  CAS  Google Scholar 

  • Chahbi, M., Mortadi, A., Zaim, S., El Ghyati, N., Monkade, M., & El Moznine, R. (2022). A new approach to investigate the ionic conductivity of NaCl and KCl solutions via impedance spectroscopy. Materials Today: Proceedings, 66, 205–211. https://doi.org/10.1016/j.matpr.2022.04.489

    Article  CAS  Google Scholar 

  • Chahid, E., El Moznine, R., Zradba, A., Dani, A., El Melouky, A., Idrissi, L., Cherkaoui, O., Choukri, E., Mezzane, E., & Belboukhari, A. (2013). Analysis of relaxation processes and low frequency dispersion in waste water. Journal of Optoelectronics and Advanced Materials, 15(November-December 2013), 1209–1216.

    Google Scholar 

  • Devesa-Rey, R., Fernández, N., Cruz, J. M., & Moldes, A. B. (2011). Optimization of the dose of calcium lactate as a new coagulant for the coagulation–flocculation of suspended particles in water. Desalination, 280(1–3), 63–71. https://doi.org/10.1016/j.desal.2011.06.051

    Article  CAS  Google Scholar 

  • El Hafidi, E. M., Mortadi, A., Chahid, E. G., & Laasri, S. (2023a). Monitoring of domestic wastewater treatment via infiltration percolation using impedance spectroscopy. Environmental Technology & Innovation, 32, 103421. https://doi.org/10.1016/j.eti.2023.103421

    Article  CAS  Google Scholar 

  • El Hafidi, E. M., Mortadi, A., Graich, A., Chahid, E. G., Laasri, S., Moznine, R. E., & Monkade, M. (2023b). Monitoring treatment of industrial wastewater using conventional methods and impedance spectroscopy. Environmental Monitoring and Assessment, 195(7), 832. https://doi.org/10.1007/s10661-023-11433-0

    Article  CAS  Google Scholar 

  • Gao, J. M., Wang, B., Li, W., Cui, L., Guo, Y., & Cheng, F. (2023). High-efficiency leaching of Al and Fe from fly ash for preparation of polymeric aluminum ferric chloride sulfate coagulant for wastewater treatment. Separation and Purification Technology, 306, 122545. https://doi.org/10.1016/j.seppur.2022.122545

    Article  CAS  Google Scholar 

  • Hachi, T., Hachi, M., Essabiri, H., Belghyti, D., Khaffou, M., Benkaddour, R., ... & Mounir, R. (2023). Water quality and environmental performance of a municipal wastewater treatment plant (Case of M’rirt City. Morocco). Materials Today: Proceedings, 72, 3795–3803. https://doi.org/10.1016/j.matpr.2022.09.395

  • Hosney, H., Tawfik, M. H., Duker, A., & van der Steen, P. (2023). Prospects for treated wastewater reuse in agriculture in low-and middle-income countries: Systematic analysis and decision-making trees for diverse management approaches. Environmental Development, 46, 100849. https://doi.org/10.1016/j.envdev.2023.100849

    Article  Google Scholar 

  • Huang, S., Shi, X., Bi, X., Lee, L. Y., & Ng, H. Y. (2019). Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresource Technology, 292, 121852. https://doi.org/10.1016/j.biortech.2019.121852

    Article  CAS  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I., ... &Nasara, M. A. (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Engineering Journal, 11(4), 951–960. https://doi.org/10.1016/j.asej.2020.01.018

  • Jagaba, A. H., Kutty, S. R. M., Hayder, G., Baloo, L., Ghaleb, A. A. S., Lawal, I. M., ... & Umaru, I. (2021). Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Engineering Journal, 12(1), 57–64. https://doi.org/10.1016/j.asej.2020.06.016

  • Jin, Y., Misra, S., Homan, D., Rasmus, J., & Revil, A. (2019). Mechanistic model of multi-frequency complex conductivity of porous media containing water-wet nonconductive and conductive particles at various water saturations. Advances in Water Resources, 130, 244–257. https://doi.org/10.1016/j.advwatres.2019.06.015

    Article  Google Scholar 

  • Jin, X., Liu, M., Zong, Y., Hu, S., Li, Y., Xu, L., ... & Wang, X. C. (2023). Unraveling the over-oxidation inhibition mechanism during the hybrid ozonation-coagulation process: Immediate entrapment and complexation between intermediate organic matter and coagulants. Water Research, 232, 119692. https://doi.org/10.1016/j.watres.2023.119692

  • Khojasteh, H., Salavati-Niasari, M., Safajou, H., & Safardoust-Hojaghan, H. (2017). Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond and Related Materials, 79, 133–144. https://doi.org/10.1016/j.diamond.2017.09.011

    Article  CAS  Google Scholar 

  • Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., ... & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012

  • Li, Y., Zong, Y., Jin, X., Guo, K., Hu, S., Jin, P., & Wang, X. (2023). Mechanism of real-time capture of organics by in-situ-formed microbubble flocs to enhance organics removal in hybrid ozonation-coagulation process. Separation and Purification Technology, 309, 123029. https://doi.org/10.1016/j.seppur.2022.123029

    Article  CAS  Google Scholar 

  • Likosova, E. M., Keller, J., Poussade, Y., & Freguia, S. (2014). A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge. Water Research, 51, 96–103. https://doi.org/10.1016/j.watres.2013.12.020

    Article  CAS  Google Scholar 

  • Liu, He, J., Keunings, R., & Bailly, C. (2006). Do tube models yield consistent predictions for the relaxation time and apparent plateau modulus of entangled linear polymers? Macromolecules, 39(8), 3093–3097. https://doi.org/10.1021/ma060158p

    Article  CAS  Google Scholar 

  • Liu, X., Feng, B., Tian, R., Li, R., Tang, Y., Wu, L., ... & Li, H. (2020). Electrical double layer interactions between soil colloidal particles: Polarization of water molecule and counterion. Geoderma, 380, 114693. https://doi.org/10.1016/j.geoderma.2020.114693

  • Mortadi, A., El Hafidi, E., Monkade, M., & El Moznine, R. (2024). Investigating the influence of absorber layer thickness on the performance of perovskite solar cells: A combined simulation and impedance spectroscopy study. Materials Science for Energy Technologies, 7, 158–165. https://doi.org/10.1016/j.mset.2023.10.001

    Article  CAS  Google Scholar 

  • Mortadi, A., Chahid, E. G., Elmelouky, A., Chahbi, M., Ghyati, N. E., Zaim, S., ...& El Moznine, R. (2020). Complex electrical conductivity as a new technique to monitor the coagulation-flocculation processes in the wastewater treatment of the textile Industry. Water Resources and Industry, 24, 100130. https://doi.org/10.1016/j.wri.2020.100130

  • Mortadi, A., Mghaiouini, R., Elmelouky, A., Chahid, E., Hairch, Y., Saifaoui, D., ...& El Moznine, R. (2022). New approach to investigate and to monitor the coagulation process during wastewater treatment. Materials Today: Proceedings, 66, 325-328. https://doi.org/10.1016/j.matpr.2022.05.424

  • Okolo, B. I., Adeyi, O., Oke, E. O., Agu, C. M., Nnaji, P. C., Akatobi, K. N., & Onukwuli, D. O. (2021). Coagulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants. Scientific African, 14, e00959. https://doi.org/10.1016/j.sciaf.2021.e00959

    Article  CAS  Google Scholar 

  • Park, B. (2022). Direct observation of carrier accumulation at the PbSe colloidal quantum Dot/ZnO interface. Materials Science in Semiconductor Processing, 140, 106378. https://doi.org/10.1016/j.mssp.2021.106378

    Article  CAS  Google Scholar 

  • Qin, T., Yao, B., Zhou, Y., Wu, C., Li, C., Ye, Z., ... & Lam, S. S. (2023). The three-dimensional electrochemical processes for water and wastewater remediations: Mechanisms, affecting parameters, and applications. Journal of Cleaner Production, 408, 137105. https://doi.org/10.1016/j.jclepro.2023.137105

  • Ridge, A. C., & Sedlak, D. L. (2004). Effect of ferric chloride addition on the removal of Cu and Zn complexes with EDTA during municipal wastewater treatment. Water Research, 38(4), 921–932. https://doi.org/10.1016/j.watres.2003.10.004

    Article  CAS  Google Scholar 

  • Ruankham, W., Tantimongcolwat, T., Phopin, K., Bausells, J., Hangouët, M., Martin, M., ...& Errachid, A. (2022). Split aptamers immobilized array microelectrodes for detection of chlorpyrifos pesticide using electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 372, 132614. https://doi.org/10.1016/j.snb.2022.132614

  • Saeed, T., Yadav, A. K., & Miah, M. J. (2022). Influence of electrodes and media saturation in horizontal flow wetlands employed for municipal sewage treatment: A comparative study. Environmental Technology & Innovation, 25, 102160. https://doi.org/10.1016/j.eti.2021.102160

    Article  CAS  Google Scholar 

  • Shabanizadeh, H., & Taghavijeloudar, M. (2023). A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53, 103651. https://doi.org/10.1016/j.jwpe.2023.103651

    Article  Google Scholar 

  • Shi, C., Wang, Q., Li, D., Zeng, B., Liu, Q., Cui, Y., ...& Wang, X. (2023). Inorganic composite coagulant for wool scouring wastewater treatment: Performance, kinetics and coagulation mechanism. Separation and Purification Technology, 313, 123482. https://doi.org/10.1016/j.seppur.2023.123482

  • Thanigaivel, S., Priya, A. K., Gnanasekaran, L., Hoang, T. K., Rajendran, S., & Soto-Moscoso, M. (2022). Sustainable applicability and environmental impact of wastewater treatment by emerging nanobiotechnological approach: Future strategy for efficient removal of contaminants and water purification. Sustainable Energy Technologies and Assessments, 53, 102484. https://doi.org/10.1016/j.seta.2022.102484

    Article  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2012). Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environmental Science and Pollution Research, 19, 2734–2744. https://doi.org/10.1007/s11356-012-0773-8

    Article  CAS  Google Scholar 

  • Wang, X., Bernard, M. C., Deslouis, C., Joiret, S., & Rousseau, P. (2010). A new transfer function in electrochemistry: Dynamic coupling between Raman spectroscopy and electrochemical impedance spectroscopy. Electrochimicaacta, 55(21), 6299–6307. https://doi.org/10.1016/j.electacta.2009.11.079

    Article  CAS  Google Scholar 

  • Wang, H. P., Chu, X. L., Chen, P., Li, J. Y., Liu, D., & Xu, Y. P. (2023a). Moving window correlation coefficient differences partial least squares (MWCC-DPLS) quantitative calibration method based on spectral differences between calibration samples: Application to the fast determination of gasoline octane number with near-infrared spectroscopy. Fuel Processing Technology, 240, 107583. https://doi.org/10.1016/j.fuproc.2022.107583

    Article  CAS  Google Scholar 

  • Wang, L., Song, Z., Zhu, L., & Jiang, J. (2023b). Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal. Iscience, 26(4). https://doi.org/10.1016/j.isci.2023.106463

  • Wang, F., Wang, B., Duan, L., Zhang, Y., Zhou, Y., Sui, Q., ...& Yu, G. (2020). Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Research, 182, 115956. https://doi.org/10.1016/j.watres.2020.115956

  • Wu, Z., He, M., Guo, X., & Zhou, R. (2010). Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Separation and Purification Technology, 76(2), 184–190. https://doi.org/10.1016/j.seppur.2010.10.006

    Article  CAS  Google Scholar 

  • Wu, J., Cao, J., Bi, H., Zhang, J., & Cao, Q. (2023). Liquid-solid contact electrification and its effect on the formation of electric double layer: An atomic-level investigation. Nano Energy, 111, 108442. https://doi.org/10.1016/j.nanoen.2023.108442

    Article  CAS  Google Scholar 

  • Yerli, C., Sahin, U., Ors, S., & Kiziloglu, F. M. (2023). Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions. Agricultural Water Management, 277, 108100. https://doi.org/10.1016/j.agwat.2022.108100

    Article  Google Scholar 

  • Yu, J., Zhu, Z., Hu, W., Deng, Y., Feng, C., & Chen, N. (2023). Research on the electrochemical treatment of nitrobenzene wastewater: The effects of process parameters and the mechanism of distinct degradation pathways. Chemosphere, 139408. https://doi.org/10.1016/j.chemosphere.2023.139408

  • Zhang, D., Wang, Y., Li, J., Fan, X., Li, E., Dong, S., ...& Shi, B. (2022a). Electrical impedance spectroscopy as a potential tool to investigate the structure and size of aggregates during water and wastewater treatment. Journal of Colloid and Interface Science, 606, 500–509. https://doi.org/10.1016/j.jcis.2021.08.038

  • Zhang, M., Wang, Y., Ma, Y., Wang, X., Zhao, B., & Ruan, W. (2022b). Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 264, 120288. https://doi.org/10.1016/j.saa.2021.120288

    Article  CAS  Google Scholar 

  • Zhang, C., Quan, B., Tang, J., Cheng, K., Tang, Y., Shen, W., ...& Zhang, C. (2023). China’s wastewater treatment: Status quo and sustainability perspectives. Journal of Water Process Engineering, 53, 103708. https://doi.org/10.1016/j.jwpe.2023.103708

  • Zhibo, S., Liyi, L., Yong, H., & Jie, B. (2018). Influence on ferric chloride aqueous solution caused by external electrostatic field: A molecular dynamics simulation study. RSC Advances, 8(68), 38706–38714. https://doi.org/10.1039/C8RA08349E

    Article  Google Scholar 

  • Zinatloo-Ajabshir, S., Baladi, M., & Salavati-Niasari, M. (2021). Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrasonics Sonochemistry, 72, 105420. https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to Dr. El mouloudi Sabbar from the Department of chemistry at the University Chouaib Doukkali El Jadida for his invaluable help in carrying out the impedance spectroscopy measurements.

Funding

The authors declare that they have not received any funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

El Mokhtar El Hafidi: played a crucial role in gathering and selecting samples, curating data, writing, and preparing the initial project. Abdelhadi Mortadi: conducted data analysis and provided insights into the tables and figures. El Ghaouti Chahid and Said Laasri: contributed to the methodology, data interpretation, supervision, and revision. The final version has been thoroughly reviewed and approved by all authors.

Corresponding author

Correspondence to El Mokhtar El Hafidi.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hafidi, E.M., Mortadi, A., Chahid, E.G. et al. Optimization of Domestic Wastewater Treatment Using Ferric Chloride Coagulant: Physicochemical Analysis and Impedance Spectroscopy Studies. Water Air Soil Pollut 235, 68 (2024). https://doi.org/10.1007/s11270-023-06881-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06881-w

Keywords

Navigation