Skip to main content
Log in

Green Synthesis of Date Palm Seed Extract–Derived Iron Sulfide Nanoparticles for Effective Removal of Hexavalent Chromium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract    

In this study, we investigated the removal of hexavalent chromium (Cr(VI)) through an innovative approach, which employed iron sulfide nanoparticles synthesized via a green chemistry technique, utilizing extracts derived from date palm seeds (referred to as ds-FeS). Batch studies, which were well represented by the Langmuir isotherm model, were conducted to determine the maximum removal capacities (qm) of ds-FeS nanoparticles at three different initial pH conditions (pH = 3, 7, and 9). Additionally, batch kinetic studies were conducted under varying conditions of initial Cr(VI) load (3.5, 9, 27, and 38 mg/g of nanoparticles), nanoparticle dose (25, 37, 50, and 75 g/g of Cr(VI)), and initial pH (3, 5, 7, and 9). Results demonstrated the positive impact of acidic pH during Cr(VI) removal by ds-FeS wherein the highest qm of 31.3 mg/g and initial rate of 6.95 mg/g·min (pseudo-second order kinetics) were observed at pH 3. Conversely, with an increase in pH to neutral and alkaline conditions, a decline in both qm and initial rates was observed. Measurements of solution pH, total chromium, and particle surface chemistry using X-ray diffraction and Fourier transform infrared spectrometry techniques revealed the crucial roles of reduction, surface precipitation, and complexation processes in Cr(VI) removal by ds-FeS nanoparticles. Overall, this study demonstrates the promising potential of environmentally friendly, date palm seed–derived iron sulfide nanoparticles for Cr(VI) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author upon request.

References

  • Abdul, N. A., Abdul-Talib, S., & Amir, A. (2019). Nano-pyrite as a reductant to remove chromium in groundwater. KSCE Journal of Civil Engineering, 23, 992–999.

    Article  Google Scholar 

  • Abushawish, A., Almanassra, I. W., Backer, S. N., Jaber, L., Khalil, A. K., Abdelkareem, M. A., Sayed, E. T., Alawadhi, H., Shanableh, A., & Atieh, M. A. (2022). High-efficiency removal of hexavalent chromium from contaminated water using nitrogen-doped activated carbon: Kinetics and isotherm study. Materials Chemistry and Physics, 291, 126758.

    Article  CAS  Google Scholar 

  • Akhtar, M. S., Alenad, A., & Malik, M. A. (2015). Synthesis of mackinawite FeS thin films from acidic chemical baths. Materials Science in Semiconductor Processing, 32, 1–5.

    Article  Google Scholar 

  • Bandara, P., Peña-Bahamonde, J., & Rodrigues, D. (2020). Redox mechanisms of conversion of Cr (VI) to Cr (III) by graphene oxide-polymer composite. Scientific Reports, 10, 1–8.

    Article  Google Scholar 

  • Bhattacharjee, S., Habib, F., Darwish, N., & Shanableh, A. (2021). Iron sulfide nanoparticles prepared using date seed extract: Green synthesis, characterization and potential application for removal of ciprofloxacin and chromium. Powder Technology, 380, 219–228.

    Article  CAS  Google Scholar 

  • Bolade, O. P., Williams, A. B., & Benson, N. U. (2020). ‘Green synthesis of iron-based nanomaterials for environmental remediation: A review’, Environmental Nanotechnology. Monitoring & Management, 13, 100279.

    Google Scholar 

  • Chen, W., Chen, S., Morsi, Y., El-Hamshary, H., El-Newhy, M., Fan, C., & Mo, X. (2016). Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Applied Materials & Interfaces, 8, 24415–24425.

    Article  CAS  Google Scholar 

  • Dalal, U., & Reddy, S. N. (2019). A novel nano zero-valent iron biomaterial for chromium (Cr6+ to Cr3+) reduction. Environmental Science and Pollution Research, 26, 10631–10640.

    Article  CAS  Google Scholar 

  • Farooqi, Z. H., Akram, M. W., Begum, R., Wu, W., & Irfan, A. (2021). Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. Journal of Hazardous Materials, 402, 123535.

    Article  CAS  Google Scholar 

  • Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 89, 309–320.

    Article  CAS  Google Scholar 

  • Guertin, J. (2004). ‘Toxicity and health effects of chromium (all oxidation states) (pp. 215–234). Chromium (VI) handbook.

    Google Scholar 

  • Horsfall, M., Jr., Ogban, F., & Akporhonor, E. E. (2006). Sorption of chromium (VI) from aqueous solution by cassava (Manihot sculenta Cranz.) waste biomass. Chemistry & Biodiversity, 3, 161–174.

    Article  CAS  Google Scholar 

  • Houng, K.-H., & Lee, D.-Y. (1998). ‘Comparisons of linear and nonlinear Langmuir and Freundlich curve-fit in the study of Cu, Cd and Pb adsorption on Taiwan soils. Soil Science, 163, 115–121.

    Article  CAS  Google Scholar 

  • Islam, M. A., Angove, M. J., & Morton, D. W. (2019). ‘Recent innovative research on chromium (VI) adsorption mechanism’, Environmental Nanotechnology. Monitoring & Management, 12, 100267.

    Google Scholar 

  • Jin, X., Liu, Y., Tan, J., Owens, G., & Chen, Z. (2018). Removal of Cr (VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. Journal of Cleaner Production, 176, 929–936.

    Article  CAS  Google Scholar 

  • Kerur, S., Bandekar, S., Hanagadakar, M. S., Nandi, S. S., Ratnamala, G., & Hegde, P. G. (2021). Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Materials Today: Proceedings, 42, 1112–1121.

    CAS  Google Scholar 

  • Kong, L., Yan, R., Liu, M., Xu, J., Hagio, T., Ichino, R., Li, L., & Cao, X. (2022). Simultaneous reduction and sequestration of hexavalent chromium by magnetic β-Cyclodextrin stabilized Fe3S4. Journal of Hazardous Materials, 431, 128592.

    Article  CAS  Google Scholar 

  • Leili, M., Fazlzadeh, M., & Bhatnagar, A. (2018). Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environmental Technology, 39, 1158–1172.

    Article  CAS  Google Scholar 

  • Liu, A., Liu, J., Han, J., & Zhang, W.-X. (2017). ‘Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano-and micro-structured iron oxides. Journal of hazardous materials, 322, 129–135.

    Article  CAS  Google Scholar 

  • Lyu, H., Tang, J., Huang, Y., Gai, L., Zeng, E. Y., Liber, K., & Gong, Y. (2017). Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chemical Engineering Journal, 322, 516–524.

    Article  CAS  Google Scholar 

  • Madhavi, V., Prasad, T., Reddy, A. V. B., Reddy, B. R., & Madhavi, G. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 116, 17–25.

    Article  CAS  Google Scholar 

  • Malaviya, P., & Singh, A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Critical Reviews in Environmental Science and Technology, 41, 1111–1172.

    Article  CAS  Google Scholar 

  • Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 42, 607–633.

    Article  CAS  Google Scholar 

  • Mehmood, S., Mahmood, M., Núñez-Delgado, A., Alatalo, J. M., Elrys, A. S., Rizwan, M., Weng, J., Li, W., & Ahmed, W. (2022). A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. Environmental Research, 213, 113614.

    Article  CAS  Google Scholar 

  • Mitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnology for Environmental Engineering, 2, 1–14.

    Article  CAS  Google Scholar 

  • Nehdi, I., Omri, S., Khalil, M., & Al-Resayes, S. (2010). Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Industrial Crops and Products, 32, 360–365.

    Article  CAS  Google Scholar 

  • Patiño-Ruiz, D. A., Meramo-Hurtado, S. I., González-Delgado, Á. D., & Herrera, A. (2021). Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method: A comparative life cycle assessment study. ACS Omega, 6, 12410–12423.

    Article  Google Scholar 

  • Plachtová, P., Medrikova, Z., Zboril, R., Tucek, J., Varma, R. S., & Maršálek, B. (2018). Iron and iron oxide nanoparticles synthesized with green tea extract: Differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chemistry & Engineering, 6, 8679–8687.

    Article  Google Scholar 

  • Rong, K., Wang, J., Zhang, Z., & Zhang, J. (2020). Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr (VI). Ecological Engineering, 149, 105793.

    Article  Google Scholar 

  • Ukhurebor, K. E., Aigbe, U. O., Onyancha, R. B., Nwankwo, W., Osibote, O. A., Paumo, H. K., Ama, O. M., Adetunji, C. O., & Siloko, I. U. (2021). Effect of hexavalent chromium on the environment and removal techniques: A review. Journal of Environmental Management, 280, 111809.

    Article  CAS  Google Scholar 

  • Wang, T., Liu, Y., Wang, J., Wang, X., Liu, B., & Wang, Y. (2019). In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. Journal of Environmental Management, 231, 679–686.

    Article  CAS  Google Scholar 

  • Wu, J., Liang, Y., Bai, P., Zheng, S., & Chen, L. (2015). Microwave-assisted synthesis of pyrite FeS 2 microspheres with strong absorption performance. RSC Advances, 5, 65575–65582.

    Article  CAS  Google Scholar 

  • Wu, J., Wang, X.-B., & Zeng, R. J. (2017). Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. Journal of Hazardous Materials, 333, 275–284.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, T., Sumona, M., Gupta, B. S., Sun, Y., Hu, Z., & Zhan, X. (2017). Utilization of iron sulfides for wastewater treatment: A critical review. Reviews in Environmental Science and Bio/technology, 16, 289–308.

    Article  CAS  Google Scholar 

  • Zhang, H., Peng, L., Chen, A., Shang, C., Lei, M., He, K., Luo, S., Shao, J., & Zeng, Q. (2019). Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydrate Polymers, 214, 276–285.

    Article  CAS  Google Scholar 

  • Zheng, Y., Liu, S., Dai, C., Duan, Y., Makhinov, A. N., Hon, L. K., & Araruna Júnior, J. T. (2020). Study on the influence mechanism of underground mineral element Fe (II) on Cr (VI) transformation under subsurface and groundwater interaction zones. Environmental Sciences Europe, 32, 1–14.

    Article  Google Scholar 

  • Zhou, C., Han, C., Min, X., & Yang, T. (2022). Effect of different sulfur precursors on efficient chromium (VI) removal by ZSM-5 zeolite supporting sulfide nano zero-valent iron. Chemical Engineering Journal, 427, 131515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Center of Advanced Materials Research at UoS for the assistance with the characterization of nanoparticles.

Funding

This work was funded by the University of Sharjah (UoS) grant number UoS-130508, PI: A. Shanableh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourjya Bhattacharjee.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, F., Shanableh, A., Bhattacharjee, S. et al. Green Synthesis of Date Palm Seed Extract–Derived Iron Sulfide Nanoparticles for Effective Removal of Hexavalent Chromium. Water Air Soil Pollut 235, 63 (2024). https://doi.org/10.1007/s11270-023-06875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06875-8

Keywords

Navigation