Skip to main content
Log in

Toxicity Bioassay and Respiratory Impact of Fungicide Tricyclazole on Anabas testudineus

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tricyclazole is a fungicide, widely used to control the blast disease of paddy. Parboiling, a step involved in the post-harvest processing of rice, releases fungicide residues, which enter water bodies and eventually reach aquatic organisms like fish. A preliminary analysis of the parboiled rice mill effluent showed the presence of the fungicide, Tricyclazole. In the present study, a 120-h bioassay was conducted to evaluate the effect of tricyclazole on A. testudineus, a freshwater fish found in Kerala. The LC50 was found to be 19.83 and 17.19 mg L-1 for 12 and 120 h, respectively. The 96-h LC50 of tricyclazole was estimated as 17.28 mg L-1. LT50 value ranged from 66.58 to 35.77 h for 17 and 17.6 mg L-1 of tricyclazole. Exposure duration was the most critical factor as LT values varied significantly across decimal increments of doses. Fishes exposed to sub-lethal concentrations (A: 1/10, B: 1/7, and C: 1/5 of 96-h LC50) for 10, 20, and 30 days exhibited behavioural abnormalities such as air gulping, loss of balance, copious secretion of mucus, loss of scales, opercular activity, discolouration, surfacing, and vertically hanging movements. Gill movement was high in the first few minutes of recovery, which also seemed to last longer with increased exposure duration. Fishes exposed to lowest sub-lethal concentration took almost 60 min for gill movement to reach normalcy. The oxygen consumption increased significantly at higher sub-lethal concentration after 20 h of exposure. The present study indicates a clear sign of metabolic impairment by tricyclazole in A. testudineus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Asifa, K. P., & Chitra, K. C. (2018). Sublethal toxic effects of Bisphenol A on oxygen consumption, haematological and histological parameters in the cichlid fish, Pseudetroplus maculatus (Bloch, 1795). International Journal of Zoological Investigations, 4(1), 21–30.

    Google Scholar 

  • Atama, C. I., Nnaji, E. C., Ezeoyili, I. C., Udeani, F. O., Onovo, C. J., Ossai, N. I., Aguzie, I. O., & Nwani, C. D. (2022). Neuromodulatory and oxidative stress evaluations in African catfish Clarias gariepinus exposed to antipsychotic drug Chlorpromazine. Drug and Chemical Toxicology, 45(3), 1318–1324. https://doi.org/10.1080/01480545.2020.1822391

  • Bej, S., Ghosh, K., Chatterjee, A., & Saha, N. C. (2021). Assessment of biochemical, haematological and behavioral biomarkers of Cyprinus carpio on exposure to a type-II pyrethroid insecticide Alpha-cypermethrin. Environmental Toxicology and Pharmacology, 87, 103717. https://doi.org/10.1016/j.etap.2021.103717

  • Caldas, S., Zanella, R., & Primel, E. (2011). Risk estimate of water contamination and occurrence of pesticide in the south of Brazil. https://doi.org/10.5772/13633

  • Chebbi, S. G., & David, M. (2010). Respiratory responses and behavioural anomalies of the carp Cyprinus carpio under quinalphos intoxication in sublethal doses. Science Asia, 36, 12–17.

    CAS  Google Scholar 

  • Chiejina, C. O., Anih, L., Okoye, C., Aguzie, I. O., Ali, D., Kumar, G., & Nwani, C. D. (2022). Haloperidol alters the behavioral, hematological and biochemical parameters of freshwater African catfish, Clarias gariepinus (Burchell 1822). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 254, 109292.

  • Connell, D. W., Lam, P., Richardson, B., & Wurker, R. (1999). Introduction to Ecotoxicology (p. 170). Blackwell Science.

    Google Scholar 

  • Corvaro, M., & Bartels, M. (2019). The ADME profile of the fungicide tricyclazole in rodent via the oral route: A critical review for human health safety assessment. Regulatory Toxicology and Pharmacology, 108, 104438. https://doi.org/10.1016/j.yrtph.2019.104438

  • Das, K. (2013). The impact of sanitary and phytosanitary measures on India’s exports and the challenges/opportunities of the SPS Agreement. Chapters, 761–824.

  • Dogan, D., & Can, C. (2011). Hematological, biochemical, and behavioral responses of Oncorhynchus mykiss to dimethoate. Fish Physiol Biochem, 37, 951–958.

    CAS  Google Scholar 

  • EC (2014) European Commission: Final Addendum to the Draft Assessment Report - Public Version. Risk assessment provided by the rapporteur member state Italy for the new active substance Tricyclazole. 

  • EFSA (European Food Safety Authority). (2015). Conclusion on the peer review of the pesticide risk assessment of the active substance Tricyclazole. EFSA Journal, 13, 4032. https://doi.org/10.2903/j.efsa.2015.4032

    Article  CAS  Google Scholar 

  • Finney, D. J. (1979). Bioassay and the practice of statistical inference. International Statistical Review / Revue Internationale de Statistique, 47, 1–12. https://doi.org/10.2307/1403201

    Article  Google Scholar 

  • FRAC (2022) FRAC Code List 2022: Fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). http://www.frac.info.

  • Ganeshwade, R. M., Rokade, P. B., & Sonwane, S. R. (2006). Behavioral responses of Cyprinus carpio to industrial effluents. Journal of Environmental Biology, 27(1), 159–160.

    CAS  Google Scholar 

  • Gayathri, S., Dev, V. V., Shiny Raj, R., Krishnakumar, A., & Vishnu Maya, T. M. (2021). Anoop Krishnan K (2021) Spatiotemporal evaluation of hydrochemical facies and pesticide residues in the cardamom plantations of Southern Western Ghats India. Environmental Nanotechnology, Monitoring & Management, 16, 100599.

    CAS  Google Scholar 

  • Hamsan, H., Ho, Y. B., Zaidon, S. Z., Hashim, Z., Saari, N., & Karami, A. (2017). Occurrence of commonly used pesticides in personal air samples and their associated health risk among paddy farmers. Science of the Total Environment, 603–604, 381–389.

    Google Scholar 

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biom. J., 50, 346–363. https://doi.org/10.1002/bimj.200810425

    Article  Google Scholar 

  • Ilavazhahan, M., & Tamilselvi, R. (2012). Studies on oxygen consumption of the Fish Catla catla (Hamilton) as Influenced by Toxic Synergism. Biomedical and Pharmacology Journal, 5(2), 319–325.

    CAS  Google Scholar 

  • Jothinarendiran, N. (2012). Effect of Dimethoate pesticide on oxygen consumption and gill histology of the fish Channa punctatus. Current Biotica, 5(4), 500–507.

    Google Scholar 

  • Kalita, P., & Choudhury, K. (2018). Evaluation of acute toxicity and behavioral response of herbicide Pendimethalin to freshwater fish Channa punctata (Bloch). International Journal of Biosciences, 13(4), 111–120.

    CAS  Google Scholar 

  • Kumar, M., Chand, R., & Shah, K. (2016). Evidences for growth-promoting and fungicidal effects of low doses of tricyclazole in barley. Plant Physiology and Biochemistry, 103, 176–182.

    CAS  Google Scholar 

  • Lenth, R. (2020). emmeans: Estimated marginal means, aka least-squares means. R package version, 1(4), 5 https://CRAN.R-project.org/package=emmeans

    Google Scholar 

  • Loomis, T. A., & Hayes, A. W. (1996). Loomis’s essentials of toxicology (4th ed., pp. 208–245). Academic press.

    Google Scholar 

  • Marigoudar, S. R., Ahmed, R. N., & David, M. (2009). Cypermethrin induced respiratory and behavioural responses in Labeo rohita. Veterinarski arhiv, 79(6), 583–590.

    CAS  Google Scholar 

  • Mehdi, H., Dickson, F. H., Bragg, L. M., Servos, M. R., & Craig, P. M. (2018). Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 224, 270–279.

    CAS  Google Scholar 

  • Mookan, M., Magbooljan, N., & Vijayakumar, R. (2022). Oreochromis mossambicus treated with Tricyclazole (75%) fungicide: A study of acute toxicity and biochemical analysis. Journal of Advanced Scientific Research, 13(1), 387–391.

    CAS  Google Scholar 

  • Muttappa, K., Reddy, H. R. V., Rajesh, M., & Padmanabha, A. (2014). Quinalphos induced alteration in respiratory rate and food consumption of freshwater fish Cyprinus carpio. Journal of Environmental Biology, 35, 395–398.

    CAS  Google Scholar 

  • Naik, R. H., Pallavi, M. S., Pavankumar, N. U., Bheemanna, M., & Paramasivam, M. (2020). Determination of Tricyclazole fungicide in rice using LC-MS/ MS and its risk assessment. Pesticide Research Journal, 32(1), 148–158.

    Google Scholar 

  • Neelima, P., Sunitha, K., Rao, K. G., Krishna, C., & Rao, J. C. S. (2016). Acute toxicity of Cypermethrin (25%EC) and its effects on behavioural changes in Cyprinus carpio (Linn.). International Journal of Zoological Investigations, 2(1), 35–47.

    Google Scholar 

  • Neglur, S. B., & David, M. (2021). Investigation of acute toxicity and the effect of Fenaxoprop-P-Ethyl herbicide on the behavior and respiratory dysfunction of the common carp (Cyprinus carpio L.). Indian Journal of Natural Sciences, 12(69), 36583–36593.

  • Nwani, C. D., Mkpadobi, B. N., Onyishi, G., Echi, P. C., Chukwuka, C. O., Oluah, S. N., & Ivoke, N. (2014). Changes in behavior and hematological parameters of freshwater African catfish Clarias gariepinus (Burchell 1822) following sublethal exposure to chloramphenicol. Journal of Advanced Scientific Research, 37(1), 107–113.

    CAS  Google Scholar 

  • Ogueji, E., Nwani, C. D., Iheanacho, S., Mbah, C. E., Okeke, C., & Yaji, A. (2018). Acute toxicity effects of ibuprofen on behaviour and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822). African Journal of Aquatic Science, 43(3), 293–303.

  • Pandit, D. N., Rani, U., & Sharma, S. K. (2020). Tricyclazole induced alterations in certain biomarker enzymes of an Indian paddy-field fish Channa punctatus (Bloch). Agricultural Science Digest.

    Google Scholar 

  • Pradhan, A., & Sahu, S. K. (2004). Process details and effluent characteristics of a rice mill in the Sambalpur district of Orissa. Journal of Industrial Pollution Control, 20(1), 111–124.

    CAS  Google Scholar 

  • Prasanna, A., & Venkatarathnamma, V. (2020). A Study on oxygen consumption in freshwater fish Labeo Rohita exposed to lethal and sub lethal concentrations of Ethion 50% EC. Indian. Journal of Forensic Medicine & Toxicology, 1(4), 4.

    Google Scholar 

  • Prosser, C. L., & Brown, F. A. (1973). Comparative Animal Physiology 1. W.B Sauders Company.

    Google Scholar 

  • Qiu, L., Jia, K., Huang, L., Liao, X., Guo, X., & Lu, H. (2019). Hepatotoxicity of Tricyclazole in zebrafish (Danio rerio). Chemosphere. https://doi.org/10.1016/j.Chemosphere

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing Version 3.4.0.

    Google Scholar 

  • Rao, D. M. R. (1989). Studies on the relative toxicity of Endosulphan to the Indian major carps Catla catla with special reference to some biochemical changes induced by the pesticide. Pesticide Biochemistry and Physiology, 33, 220–229.

    CAS  Google Scholar 

  • Rajeswari, G., Vinnakota, L., & Rathnamma, V. V. (2020). Toxicity evaluation and oxygen consumption studies on the fish Ctenopharyngodon idella exposed to λ-cyhalothrin 5% EC. International Journal of Pharmaceutical Sciences and Research, 11(11), 5775–5782.

    CAS  Google Scholar 

  • Revathy, R., Arun, A. U., Jose, H., Soman, S., Mathai, R. S., & Rajan, B. V. (2022). Assessment of sub lethal Toxicity of Hydrocortisone (C21H30O5): Physiological and haematological biomarker reactions on Anabas testudineus. International Journal of Ecology and Environmental Sciences, 48, 439–447.

    Google Scholar 

  • Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLOS ONE, 10, e0146021. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  Google Scholar 

  • Saha, S., & Saha, N. C. (2021). Study on acute toxicity of Bifenthrin to Clarias batrachus (Linn.).Indian. Journal of Ecology, 48(2), 545–548.

    Google Scholar 

  • Saha, S., Mukherjee, D., Dhara, K., & Saha, N. C. (2021). Acute toxicity bioassay of a pyrethroid pesticide Bifenthrin to the Asian stinging catfish, Heteropneustes Fossilis (Bloch). Current World Environment, 16(1), 250–258.

    Google Scholar 

  • Salako, A. F., Amaeze, N. H., Shobajo, H. M., & Osuala, F. I. (2020). Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata peters, 1859). Scientific African.

    Google Scholar 

  • Salam, A., Arun, A. U., & Soman, S. (2021). Respiratory stress of sub-lethal concentration of Chlorine on Oreochromis niloticus. International Journal of Life science and Pharma Research, 11(3), L12–L16. https://doi.org/10.22376/ijpbs/lpr.2021.11.3

    Article  CAS  Google Scholar 

  • Sancho, E., Fernández-Vega, C., Villarroel, M. J., Andreu-Moliner, E., & Ferrando, M. D. (2009). Physiological effects of Tricyclazole on zebrafish (Danio rerio) and post-exposure recovery. Comparative Biochemistry and Physiology, Part C, 150, 25–32.

    Google Scholar 

  • Shiny Raj, R., & Anoop Krishnan, K. (2023a). A comprehensive review on the impact of emerging organophosphorous pesticides and their remedial measures: Special focus on acephate. Environmental Nanotechnology, Monitoring & Management, 20, 100813. https://doi.org/10.1016/j.enmm.2023.100813

    Article  CAS  Google Scholar 

  • Shiny Raj, R., & Anoop Krishnan, K. (2023b). Batch adsorption studies incorporating response surface methodology for the elimination of acephate. Environmental Sciences Proceedings, 25(1), 98. https://doi.org/10.3390/ECWS-7-14309

    Article  Google Scholar 

  • Shivakumar, R., & David, M. (2004). Toxicity of Endosulfan to the freshwater fish, Cyprinus carpio. Indian Journal of Ecology, 31, 27–29.

    Google Scholar 

  • Shrivastava, S., & Sharma, S. (2020). A brief review to study of rice mill water pollution on Mahanadi River at Chhattisgarh. International Research Journal of Multidisciplinary Scope, 1(2), 18–20.

    Google Scholar 

  • Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). afex: Analysis of factorial experiments. R paclkage version o, 27–22 http://CRAN.R-project.org/package=afex

  • Soni, R., & Verma, S. K. (2019). Acute toxicity and behavioural responses in Clarias batrachus (Linnaeus) exposed to herbicide Pretilachlor. Heliyon, 5, e01090. https://doi.org/10.1016/j.heliyon.2018.e01090

    Article  Google Scholar 

  • Stark, J. D. (2005). How closely do acute lethal concentration estimates predict effects of toxicants on populations? Integrated Environmental Assessment and Management, 1, 109–113. https://doi.org/10.1897/IEAM_2004-002r.1

    Article  CAS  Google Scholar 

  • Strickland, I. D., & Parsons, T. R. (1972). Practical handbook of seawater analysis. Bull, 167, 203.

    Google Scholar 

  • Sun, K., Krause, G. F., Mayer, F. L., Ellersieck, M. R., & Basu, A. P. (1995). Estimation of acute toxicity by fitting a dose-time-response surface. Risk Analysis, 15, 247–252. https://doi.org/10.1111/j.1539-6924.1995.tb00318.x

    Article  CAS  Google Scholar 

  • Thangamalathi, S., & Anuradha, V. (2020). Lithium induced toxicity profile of oxygen consumption, haematological parameters and biochemical profiles of Channa punctatus and Oreochromis niloticus. Nature Environment and Pollution Technology, 19(2), 677–685.

    CAS  Google Scholar 

  • Uma, R., Alwar,Devi, S., & Ajith, M. (2017). Experimental study on treatment of rice mill effluent using chitosan as an absorbent.  SSRG International Journal of Civil Engineering Sp. Issue, 579–581.

  • Ural, M. S., & Saglam, N. (2005). A study on the acute toxicity of pyrethroid Deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pesticide Biochemistry and Physiology, 83, 124–131.

    CAS  Google Scholar 

  • Usman, T., Abdullah, S., Naz, H., Abbas, K., Shafique, L., & Siddique, Q. (2020). Acute toxic effect of technical grade insecticides on behavior, catalase activity and total protein contents of fish Ctenopharyngodon Idella. Pakistan Journal of Zoology, 52(5), 2023–2026.

    CAS  Google Scholar 

  • Vani, G., Veeraiah, K., Kumar, M. V., & Parveen, S. K. (2020). Effect of Cartap Hydrochloride (50% SP) on oxygen consumption of fresh water fish, Cirrhinus Mrigala (Hamilton). Pollution Research, 39(2), 368–372.

    CAS  Google Scholar 

  • Vivek, S., Indumathi, S. P., & Radha, T. (2009). Ecological risk assessment of the fungicide Tricyclazole (75%) on Ophiocephalus leucopunctatus (Sykes, 1839) with respect to hepatic enzymes and pathological anomalies. Research Journal of Agriculture and Biological Sciences, 5(4), 445–451.

    CAS  Google Scholar 

  • Wandscheer, A. C. D., Marchesan, E., Tedesco, S. B., Frescura, V. D. S., Soares, C. F., Londero, G. P., Telo, G. M., & Hansel, D. S. S. (2017). Cytogenotoxicity of rice crop water after application of the Tricyclazole fungicide. Anais da Academia Brasileira de Ciências, 89, 1251–1258. https://doi.org/10.1590/0001-3765201720150536

    Article  CAS  Google Scholar 

  • Yang, R., Brauner, C., Thurston, V., Neuman, J., & Randall, D. J. (2000). Relationship between toxicant transfer kinetic processes and fish oxygen consumption. Aquatic Toxicology, 48, 95–108.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Principal, Nirmala College, Muvattupuzha, for the facilities provided during the entire study.

Author information

Authors and Affiliations

Authors

Contributions

Author AU Arun designed the study and wrote the protocol. Author Shalu Soman carried out the experimental work and analysis and drafted the manuscript. Author Syamkumar R conducted the statistical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shalu Soman.

Ethics declarations

Ethics Approval and Consent to Participate

Authors declare that there is no experiment included in the study which requires ethics approval.

Consent for Publication

All authors given consent for publication and no data of any individual person included in the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soman, S., Aloorkalarickal Unnikrishnan, A. & Reghu Nandanan Pillai, S. Toxicity Bioassay and Respiratory Impact of Fungicide Tricyclazole on Anabas testudineus. Water Air Soil Pollut 235, 30 (2024). https://doi.org/10.1007/s11270-023-06836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06836-1

Keywords

Navigation