Skip to main content
Log in

Hydrothermal Synthesis of Waste Black Tea Pulp and Tomato Stem Hydrochars and Comparison of Their Adsorption Performance of Safranin Dye

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, hydrochar prepared from black tea (BT) and tomato stem (TS) using subcritical water (SW) conditions was used as an adsorbent for color removal from Safranin-O (SO-Basic Red 2) dye wastewater. The use of black tea hydrochar (BTH) and tomato stem hydrochar (TSH) was investigated in the removal of Safranin-O dye from aqueous solutions by the adsorption process. In optimization studies, variables impacting the adsorption process such as adsorbent size, pH, dye concentration, adsorbent dosage, and shaking time were examined. As a result of optimization studies, removal efficiencies of 85.15% for BTH and 81.5% for TSH were achieved. In this study, the reuse cycle was also examined. Adsorption isotherm models, adsorption kinetic models, and thermodynamic studies have been studied to explain the relationships between the adsorption processes taking place. Data appropriate for the Freundlich and D-R isotherm models as well as the PSO kinetic model were obtained for TSH while defining the Freundlich isotherm model and the pseudo-second-order (PSO) kinetic model for BTH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abbou, B., Lebkiri, I., Ouaddari, H., Kadiri, L., Ouass, A., Habssaouı, A., Lebkiri, A., & El Housseıne, R. I. F. I. (2021). Removal of Cd (II), Cu (II), and Pb (II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turkish Journal of Chemistry, 45(2), 362–376. https://doi.org/10.3906/kim-2004-82

    Article  CAS  Google Scholar 

  • Abukhadra, M. R., El-Meligy, M. A., & El-Sherbeeny, A. M. (2020). Evaluation and characterization of Egyptian ferruginous kaolinite as adsorbent and heterogeneous catalyst for effective removal of safranin-O cationic dye from water. Arabian Journal of Geosciences, 13, 1–13.

    Article  Google Scholar 

  • Abukhadra, M. R., & Shaban, M. (2019). Recycling of different solid wastes in synthesis of high-order mesoporous silica as adsorbent for safranin dye. International journal of Environmental Science and Technology, 16, 7573–7582. https://doi.org/10.1007/s13762-019-02231-8

    Article  CAS  Google Scholar 

  • Arslantaş, C.; M’barek, I.; Saleh, M.; Isik, Z.; Ozdemir, S.; Dundar, A.; Dizge, N. Basic red 18 and remazol brilliant blue R biosorption using Russula brevipes, Agaricus augustus, Fomes fomentarius. Water Practice & Technology, 2022, 17(3), 749-762. https://doi.org/10.2166/wpt.2022.008

    Book  Google Scholar 

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2090-9063, 1–11. https://doi.org/10.1016/jchem/2017/3039817/

    Article  Google Scholar 

  • Bansal, M., Patnala, P. K., & Dugmore, T. (2020). Adsorption of Eriochrome Black-T (EBT) using tea waste as a low cost adsorbent by batch studies: A green approach for dye effluent treatments. Current Research in Green and Sustainable Chemistry, 3, 100036. https://doi.org/10.1016/j.crgsc.2020.100036

    Article  Google Scholar 

  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  • de Araujo, C. M. B., Wernke, G., Ghislandi, M. G., Diório, A., Vieira, M. F., Bergamasco, R., Sobrinho, M. A. M., & Rodrigues, A. E. (2023). Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. Environmental Research, 216, 114425. https://doi.org/10.1016/j.envres.2022.114425

    Article  CAS  Google Scholar 

  • Dubinin, M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 60(2), 235–241. https://doi.org/10.1021/cr60204a006?casa_token

    Article  CAS  Google Scholar 

  • Eliuz, E. A. E., & Yabalak, E. (2022). Chicken feather hydrochar incorporated with phenolic extract of Rosa damascena Mill. to enlarge the antibacterial performance against Acinobacter baumannii and Staphylococcus aureus. Journal of Environmental. Chemical Engineering, 10(5), 108289. https://doi.org/10.1016/j.jece.2022.108289

    Article  CAS  Google Scholar 

  • Engates, K. E., & Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research, 18, 386–395. https://doi.org/10.1007/s11356-010-0382-3

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solution. Physical Chemistry Society, 40, 1361–1368.

    Google Scholar 

  • Ghanim, B., Leahy, J. J., OʼDwyer, T. F., Kwapinski, W., Pembroke, J. T., & Murnane, J. G. (2022). Removal of hexavalent chromium (Cr (VI)) from aqueous solution using acid-modified poultry litter-derived hydrochar: adsorption, regeneration and reuse. Journal of Chemical Technology & Biotechnology, 97(1), 55–66. https://doi.org/10.1002/jctb.6904

    Article  CAS  Google Scholar 

  • Günay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146, 362–371. https://doi.org/10.1016/j.jhazmat.2006.12.034

    Article  CAS  Google Scholar 

  • Haciosmanoğlu, G. G., Mejías, C., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2022). Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. Journal of Environmental Management, 317, 115397. https://doi.org/10.1016/j.jenvman.2022.115397

    Article  CAS  Google Scholar 

  • Hiew, B. Y. Z., Lee, L. Y., Lai, K. C., Gan, S., Thangalazhy-Gopakumar, S., Pan, G. T., & Yang, T. C. K. (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environmental Research, 168, 241–253. https://doi.org/10.1016/j.envres.2018.09.030

    Article  CAS  Google Scholar 

  • Ho, Y., Wase, D., & Forster, C. (1996). Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA, 22, 219–224. https://doi.org/10.10520/AJA03784738_1418

    Article  CAS  Google Scholar 

  • Ighalo, J. O., Rangabhashiyam, S., Dulta, K., Umeh, C. T., Iwuozor, K. O., Aniagor, C. O., Eshiemogie, S. O., Iwuchukwu, F. U., & Igwegbe, C. A. (2022). Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chemical Engineering Research and Design, 184, 419–456. https://doi.org/10.1016/j.cherd.2022.06.028

    Article  CAS  Google Scholar 

  • Isik, Z., Saleh, M., & Dizge, N. (2021). Adsorption studies of ammonia and phosphate ions onto calcium alginate beads. Surfaces and Interfaces, 26, 101330. https://doi.org/10.1016/j.surfin.2021.101330

    Article  CAS  Google Scholar 

  • Isik, Z., Saleh, M., M’barek, I., Yabalak, E., Dizge, N., & Deepanraj, B. (2022). Investigation of the adsorption performance of cationic and anionic dyes using hydrochared waste human hair. Biomass Conversion and Biorefinery, 1–14. https://doi.org/10.1007/s13399-022-02582-2

  • Januário, E. F. D., Vidovix, T. B., Araujo, L. A. D., Bergamasco Beltran, L., Bergamasco, R., & Vieira, A. M. S. (2022). Investigation of Citrus reticulata peels as an efficient and low-cost adsorbent for the removal of safranin orange dye. Environmental Technology, 43(27), 4315–4329. https://doi.org/10.1080/09593330.2021.1946601

    Article  CAS  Google Scholar 

  • Kara, A., Kılıç, M., Tekin, N., Dinibütün, N., & Şafaklı, A. (2018). Application of Sepiolite-Poly (vinylimidazole) composite for the removal of Cu (II) from aqueous solution: Isotherm and thermodynamics studies. International Journal of Chemistry and Technology, 2(1), 20–33. https://doi.org/10.32571/ijct.341542

    Article  Google Scholar 

  • Karakehya, N., & Bilgic, C. (2019). Preparation of nanocrystalline cellulose from tomato stem and commercial microcrystalline cellulose: A comparison between two starting materials. Cellulose Chemistry and Technology, 53, 993–1000. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.97

    Article  CAS  Google Scholar 

  • Khoshbouy, R., Takahashi, F., & Yoshikawa, K. (2019a). Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environmental Research, 175, 457–467. https://doi.org/10.1016/j.envres.2019.04.002

    Article  CAS  Google Scholar 

  • Khoshbouy, R., Takahashi, F., & Yoshikawa, K. (2019b). Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environmental Research, 175, 457–467.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloester stofe. Veternskapsakad Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Løvdal, T., Van Droogenbroeck, B., Eroglu, E. C., Kaniszewski, S., Agati, G., Verheul, M., & Skipnes, D. (2019). Valorization of tomato surplus and waste fractions: A case study using Norway, Belgium, Poland, and Turkey as examples. Foods, 8(7), 229. https://doi.org/10.3390/foods8070229

    Article  CAS  Google Scholar 

  • M’barek, I., Gun, M., Moussaoui, Y., Arslan, H., & Dizge, N. (2022). Adsorption studies of cationic Safranin and anionic Remazol Brilliant Blue R dyes onto Tamarix aphylla’s stem. International journal of Environmental Science and Technology, 1–12. https://doi.org/10.1007/s13762-022-04435-x

  • Nassar, A. E., El-Aswar, E. I., Rizk, S. A., Gaber, S. E. S., & Jahin, H. S. (2023). Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Separation and Purification Technology, 306, 122569. https://doi.org/10.1016/j.seppur.2022.122569

    Article  CAS  Google Scholar 

  • Pakdel, P. M., Peighambardoust, S. J., Arsalani, N., & Aghdasinia, H. (2022). Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly (acrylic acid-co-itaconic acid) nanocomposite hydrogel. Environmental Research, 212, 113201. https://doi.org/10.1016/j.envres.2022.113201

    Article  CAS  Google Scholar 

  • Qu, J., Lin, X., Liu, Z., Liu, Y., Wang, Z., Liu, S., Meng, Q., Tao, Y., & Zhang, Y. (2022). One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb (II) and tetracycline from water. Bioresource Technology, 343, 126046.

    Article  CAS  Google Scholar 

  • Rotte, N. K., Yerramala, S., Boniface, J., & Srikanth, V. V. (2014). Equilibrium and kinetics of Safranin O dye adsorption on MgO decked multi-layered graphene. Chemical Engineering Journal, 258, 412–419. https://doi.org/10.1016/j.cej.2014.07.065

    Article  CAS  Google Scholar 

  • Saleh, M., Bilici, Z., Ozay, Y., Yabalak, E., Yalvac, M., & Dizge, N. (2021). Green synthesis of Quercus coccifera hydrochar in subcritical water medium and evaluation of its adsorption performance for BR18 dye. Water Science and Technology, 83(3), 701–714. https://doi.org/10.2166/wst.2020.607

    Article  CAS  Google Scholar 

  • Serafin, J., Kusiak-Nejman, E., Wanag, A., Morawski, A. W., & Llorca, J. (2021). Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113406. https://doi.org/10.1016/j.jphotochem.2021.113406

    Article  CAS  Google Scholar 

  • Tambat, S. N., Sane, P. K., Suresh, S., Varadan, N., Pandit, A. B., & Sontakke, S. M. (2018). Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye. Advanced Powder Technology, 29(11), 2626–2632. https://doi.org/10.1016/j.apt.2018.07.010

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S. J., & Chao, H. P. (2017). Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. Journal of Environmental Management, 188, 322–336. https://doi.org/10.1016/j.jenvman.2016.12.003

    Article  CAS  Google Scholar 

  • Ullah, A., Zahoor, M., Din, W. U., Muhammad, M., Khan, F. A., Sohail, A., Ullah, R., Ali, E. A., & Murthy, H. C. (2022). Removal of methylene blue from aqueous solution using black tea wastes: Used as efficient adsorbent. Adsorption Science & Technology, 2022, 1–9. https://doi.org/10.1155/2022/5713077

    Article  CAS  Google Scholar 

  • Verma, M., Tyagi, I., Kumar, V., Goel, S., Vaya, D., & Kim, H. (2021). Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: Kinetics, isotherm, and reusability. Journal of Environmental Chemical Engineering, 9(5), 106045.

    Article  CAS  Google Scholar 

  • Vidovix, T. B., Quesada, H. B., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2022). Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environmental Technology, 43(20), 3047–3063. https://doi.org/10.1080/09593330.2021.1914180

    Article  CAS  Google Scholar 

  • Wu, J., Yang, J., Feng, P., Huang, G., Xu, C., & Lin, B. (2020a). High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere, 246, 125734. https://doi.org/10.1016/j.chemosphere.2019.125734

    Article  CAS  Google Scholar 

  • Wu, J., Yang, J., Huang, G., Xu, C., & Lin, B. (2020b). Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. Journal of Cleaner Production, 251, 119717. https://doi.org/10.1016/j.jclepro.2019.119717

    Article  CAS  Google Scholar 

  • Yabalak, E. (2018). Degradation of ticarcillin by subcritical water oxidation method: Application of response surface methodology and artificial neural network modeling. Journal of Environmental Science and Health, Part A, 53(11), 975–985. https://doi.org/10.1080/10934529.2018.1471023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AA: methodology and data curation; PB: methodology and data curation; MG: methodology and data curation; ZI: methodology, ınvestigation, and data curation; EY: ınvestigation, conceptualization, writing—original draft, formal analysis, review and editing; ND: ınvestigation, conceptualization, writing—original draft, formal analysis, review and editing

Corresponding authors

Correspondence to Nadir Dizge or Erdal Yabalak.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alterkaoui, A., Belibagli, P., Gun, M. et al. Hydrothermal Synthesis of Waste Black Tea Pulp and Tomato Stem Hydrochars and Comparison of Their Adsorption Performance of Safranin Dye. Water Air Soil Pollut 234, 786 (2023). https://doi.org/10.1007/s11270-023-06798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06798-4

Keywords

Navigation