Skip to main content
Log in

A Comprehensive Review on Handling of Plastic Waste For Energy Generation—Current Status and Future Challenges

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The growing global concern regarding plastic waste pollution and its detrimental environmental impact has prompted significant research and innovation in waste management and energy generation. This comprehensive review explores the current state of handling plastic waste for energy generation, encompassing various technologies and approaches. It also identifies and addresses the imminent challenges facing pursuing sustainable and efficient plastic waste-to-energy solutions. The review discusses the alarming rise in plastic waste production, emphasizing the critical need for sustainable waste management strategies. It provides an overview of the existing methods for handling plastic waste, including mechanical recycling, chemical recycling, and landfill disposal. Special attention is given to emerging technologies such as pyrolysis, gasification, and waste-to-energy incineration, which offer promising avenues for converting plastic waste into valuable energy resources. This comprehensive review provides a valuable overview of the current state of handling plastic waste for energy generation. It underscores the significance of sustainable waste management practices and outlines the potential benefits and challenges associated with various plastic-to-energy technologies. By addressing these challenges and embracing a holistic approach, society can move closer to a sustainable future where plastic waste is managed effectively and contributes to generating clean and renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

N/A.

References

  • Ahmad, T., & Guria, C. (2022). Progress in the modification of polyvinyl chloride (PVC) membranes: a performance review for wastewater treatment. Journal of Water Process Engineering, 45, 102466.

    Article  Google Scholar 

  • Alabi, O. A., Ologbonjaye, K. I., Awosolu, O., & Alalade, O. E. (2019). Public and environmental health effects of plastic wastes disposal: a review. Journal of Toxicology and Risk Assessment, 5, 1–13.

    Google Scholar 

  • Al-Yaari, M., & Dubdub, I. (2020). Application of artificial neural networks to predict the catalytic pyrolysis of HDPE using non-isothermal TGA data. Polymers, 12, 1813.

    Article  CAS  Google Scholar 

  • Amjadi, M., & Fatemi, A. (2021). Creep behavior and modeling of high-density polyethylene (HDPE). Polymer Testing, 94, 107031.

    Article  CAS  Google Scholar 

  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 148, 925–934.

    Article  CAS  Google Scholar 

  • Awasthi, A. K., Shivashankar, M., & Majumder, S. (2017). Plastic solid waste utilization technologies: a review. In IOP conference series: Materials science and engineering (p. 022024).

    Google Scholar 

  • Bai, B., Wang, W., & Jin, H. (2020). Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water. Energy, 191, 116527.

    Article  CAS  Google Scholar 

  • Balqis, F., Prakoso, B., Hanif Hawari, N., Eldona, C., & Sumboja, A. (2022). Recent development of polyaniline/graphene composite electrodes for flexible supercapacitor devices. ChemNanoMat, 8, e202200151.

    Article  CAS  Google Scholar 

  • Bobulski, J., & Kubanek, M. (2021). Deep learning for plastic waste classification system. Applied Computational Intelligence and Soft Computing, 2021, 1–7.

    Article  Google Scholar 

  • Boškoski, I., Gallo, C., Wallace, M. B., & Costamagna, G. (2020). COVID-19 pandemic and personal protective equipment shortage: protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointestinal endoscopy, 92, 519–523.

    Article  Google Scholar 

  • Briassoulis, D., Aristopoulou, A., Bonora, M., & Verlodt, I. (2004). Degradation characterisation of agricultural low-density polyethylene films. Biosystems engineering, 88, 131–143.

    Article  Google Scholar 

  • Butt, A. S., Ali, I., Govindan, K. (2023). The role of reverse logistics in a circular economy for achieving sustainable development goals: a multiple case study of retail firms. Production Planning & Control, 1–13. https://doi.org/10.1080/09537287.2023.2197851

  • Cao, B., Sun, Y., Guo, J., Wang, S., Yuan, J., Esakkimuthu, S., et al. (2019). Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine. Fuel, 246, 319–329.

    Article  CAS  Google Scholar 

  • Center, E. (1996). Plastic Task Force Report. Berkeley, CA.

    Google Scholar 

  • Chatterjee, D. P., & Nandi, A. K. (2021). A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 9, 15880–15918.

    Article  CAS  Google Scholar 

  • Chattopadhyay, J., Pathak, T., Srivastava, R., & Singh, A. (2016). Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy, 103, 513–521.

    Article  CAS  Google Scholar 

  • Choi, C., Ashby, D. S., Butts, D. M., DeBlock, R. H., Wei, Q., Lau, J., et al. (2020). Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 5, 5–19.

    Article  Google Scholar 

  • Choi, H., & Yoon, H. (2015). Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials, 5, 906–936.

    Article  CAS  Google Scholar 

  • Comăniță, E.D., Hlihor, R.M., Ghinea, C. and Gavrilescu, M., (2016). Occurrence of plastic waste in the environment: ecological and health risks. Environmental Engineering & Management Journal (EEMJ), 15(3), 675–685.

  • Dagiliene, L., Frendzel, M., Sutiene, K., & Wnuk-Pel, T. (2020). Wise managers think about circular economy, wiser report and analyze it. Research of environmental reporting practices in EU manufacturing companies. Journal of Cleaner Production, 274, 121968.

    Article  Google Scholar 

  • Dai, M., Xu, H., Yu, Z., Fang, S., Chen, L., Gu, W., et al. (2018). Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Applied Thermal Engineering, 136, 9–15.

    Article  Google Scholar 

  • Dange, P., Pandit, S., Jadhav, D., Shanmugam, P., Gupta, P. K., Kumar, S., et al. (2021). Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock. Sustainability, 13, 8796.

    Article  CAS  Google Scholar 

  • Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of hazardous materials, 380, 120899.

    Article  CAS  Google Scholar 

  • Di Maro, M., Duraccio, D., Malucelli, G., & Faga, M. (2021). High density polyethylene composites containing alumina-toughened zirconia particles: mechanical and tribological behavior. Composites Part B: Engineering, 217, 108892.

    Article  Google Scholar 

  • Diaz-Silvarrey, L. S., Zhang, K., & Phan, A. N. (2018). Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green chemistry, 20, 1813–1823.

    Article  CAS  Google Scholar 

  • Drzyzga, O., & Prieto, A. (2019). Plastic waste management, a matter for the ‘community’. Microbial biotechnology, 12, 66.

    Article  Google Scholar 

  • Duan, Q., & Li, J. (2021). Classification of common household plastic wastes combining multiple methods based on near-infrared spectroscopy. Acs Es&T Engineering, 1, 1065–1073.

    Article  CAS  Google Scholar 

  • Fairbrother, A., Hsueh, H.-C., Kim, J. H., Jacobs, D., Perry, L., Goodwin, D., et al. (2019). Temperature and light intensity effects on photodegradation of high-density polyethylene. Polymer degradation and stability, 165, 153–160.

    Article  CAS  Google Scholar 

  • Feng, Y., Li, W., An, J., Zhao, Q., Wang, X., Liu, J., et al. (2021). Graphene family for hydrogen peroxide production in electrochemical and bioelectrochemical system. Science of The Total Environment, 769, 144491.

  • Ferdous, J., & Islam, M. R., (2019). Fixed bed co-pyrolysis of low density polyethylene and rice husk. Carbon [C], 40, 85–12.

  • Fesseha, H., & Abebe, F. (2019). Degradation of plastic materials using microorganisms: a review. Public Health Open Journal, 4, 57–63.

    Article  Google Scholar 

  • Ganeshan, G., Shadangi, K. P., & Mohanty, K. (2018). Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. Journal of Thermal Analysis and Calorimetry, 131, 1803–1816.

    Article  CAS  Google Scholar 

  • Ghorbannezhad, P., Park, S., & Onwudili, J. A. (2020). Co-pyrolysis of biomass and plastic waste over zeolite-and sodium-based catalysts for enhanced yields of hydrocarbon products. Waste Management, 102, 909–918.

    Article  CAS  Google Scholar 

  • Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 52, 35–41.

    Article  CAS  Google Scholar 

  • Greig, P., Carvalho, C., El-Boghdadly, K., & Ramessur, S. (2020). Safety testing improvised COVID-19 personal protective equipment based on a modified full-face snorkel mask. Anaesthesia, 75, 970.

    Article  CAS  Google Scholar 

  • Hassan, H., Hameed, B., & Lim, J. (2020). Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: synergistic effect and product distributions. Energy, 191, 116545.

    Article  CAS  Google Scholar 

  • Heme, H. N., Alif, M. S. N., Rahat, S. S. M., & Shuchi, S. B. (2021). Recent progress in polyaniline composites for high capacity energy storage: a review. Journal of Energy Storage, 42, 103018.

    Article  Google Scholar 

  • Hidayah, N. (2018). A review on landfill management in the utilization of plastic waste as an alternative fuel. In E3S Web of Conferences (p. 05013).

    Google Scholar 

  • Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2115–2126.

    Article  CAS  Google Scholar 

  • Hu, Q., Tang, Z., Yao, D., Yang, H., Shao, J., & Chen, H. (2020). Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. Journal of Cleaner Production, 260, 121102.

    Article  CAS  Google Scholar 

  • Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., et al. (2016). Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 22, 422–438.

    Article  CAS  Google Scholar 

  • Ilyas, M., Ahmad, W., Khan, H., Yousaf, S., Khan, K., & Nazir, S. (2018). Plastic waste as a significant threat to environment–a systematic literature review. Reviews on environmental health, 33, 383–406.

    Article  Google Scholar 

  • Iqbal, M. Z., & Aziz, U. (2022). Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. Journal of Energy Storage, 46, 103823.

    Article  Google Scholar 

  • Istrate, I.-R., Juan, R., Martin-Gamboa, M., Domínguez, C., García-Muñoz, R. A., & Dufour, J. (2021). Environmental life cycle assessment of the incorporation of recycled high-density polyethylene to polyethylene pipe grade resins. Journal of Cleaner Production, 319, 128580.

    Article  CAS  Google Scholar 

  • Izzatie, N., Basha, M., Uemura, Y., Hashim, M., Afendi, M., & Mazlan, M. (2019). Co-pyrolysis of rubberwood sawdust (RWS) and polypropylene (PP) in a fixed bed pyrolyzer. Journal of Mechanical Engineering and Sciences, 13, 4636–4647.

    Article  CAS  Google Scholar 

  • Jatoi, A. S., Akhter, F., Mazari, S. A., Sabzoi, N., Aziz, S., Soomro, S. A., et al. (2021). Advanced microbial fuel cell for waste water treatment—a review. Environmental Science and Pollution Research, 28, 5005–5019.

    Article  CAS  Google Scholar 

  • Jatoi, A. S., Mazari, S., Baloch, H. A., & Riaz, S. (2016). 256. Study to investigate the optimize blending ratio of cow dung manure with distillery waste water for power generation in microbial fuel cell. In 4th international conference on energy, environment and sustainable development.

    Google Scholar 

  • Jin, H., Ma, T., Sha, X., Liu, Z., Zhou, Y., Meng, X., et al. (2021). Polystyrene microplastics induced male reproductive toxicity in mice. Journal of hazardous materials, 401, 123430.

    Article  CAS  Google Scholar 

  • Jordan, J. L., Casem, D. T., Bradley, J. M., Dwivedi, A. K., Brown, E. N., & Jordan, C. W. (2016). Mechanical properties of low density polyethylene. Journal of dynamic behavior of materials, 2, 411–420.

    Article  Google Scholar 

  • Kai, X., Yang, T., Shen, S., & Li, R. (2019). TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE). Energy Conversion and Management, 181, 202–213.

    Article  CAS  Google Scholar 

  • Kaur, R., Singh, S., Chhabra, V. A., Marwaha, A., Kim, K.-H., & Tripathi, S. (2021). A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications. Journal of Hazardous Materials, 417, 125992.

    Article  CAS  Google Scholar 

  • Khan, T., Irfan, M., Ali, M., Dong, Y., Ramakrishna, S., & Umer, R. (2021). Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon, 176, 602–631.

    Article  CAS  Google Scholar 

  • Kik, K., Bukowska, B., & Sicińska, P. (2020). Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution, 262, 114297.

    Article  CAS  Google Scholar 

  • Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems, J. Yan (Ed.). 1–25.

  • Kong, F., Ren, H.-Y., Pavlostathis, S. G., Nan, J., Ren, N.-Q., & Wang, A. (2020). Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems. Renewable and Sustainable Energy Reviews, 125, 109816.

    Article  CAS  Google Scholar 

  • Lerman, M. J., Lembong, J., Muramoto, S., Gillen, G., & Fisher, J. P. (2018). The evolution of polystyrene as a cell culture material. Tissue Engineering Part B: Reviews, 24, 359–372.

    Article  CAS  Google Scholar 

  • Li, S., Zhang, N., Zhou, H., Li, J., Gao, N., Huang, Z., et al. (2018). An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor. Applied Surface Science, 453, 63–72.

    Article  CAS  Google Scholar 

  • Liang, Y., Tan, Q., Song, Q., & Li, J. (2021). An analysis of the plastic waste trade and management in Asia. Waste Management, 119, 242–253.

    Article  Google Scholar 

  • Liao, C., Zhao, D., & Zhang, S. (2018). Psychological and conditional factors influencing staff’s takeaway waste separation intention: an application of the extended theory of planned behavior. Sustainable Cities and Society, 41, 186–194.

    Article  Google Scholar 

  • Liu, Y., Guo, L., Wang, W., Sun, Y., & Wang, H. (2019). Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite. Construction and Building Materials, 224, 691–699.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, C., Li, F., Liu, H., & Yang, J. (2020). Stocks and flows of polyvinyl chloride (PVC) in China: 1980-2050. Resources, Conservation and Recycling, 154, 104584.

    Article  Google Scholar 

  • Luyt, A., Molefi, J., & Krump, H. (2006). Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polymer Degradation and Stability, 91, 1629–1636.

    Article  CAS  Google Scholar 

  • Mao, W.-L., Chen, W.-C., Wang, C.-T., & Lin, Y.-H. (2021). Recycling waste classification using optimized convolutional neural network. Resources, Conservation and Recycling, 164, 105132.

    Article  Google Scholar 

  • Menaa, F., Fatemeh, Y., Vashist, S. K., Iqbal, H., Sharts, O. N., & Menaa, B. (2021). Graphene, an interesting nanocarbon allotrope for biosensing applications: advances, insights, and prospects. Biomedical Engineering and Computational Biology, 12, 1179597220983821.

    Article  Google Scholar 

  • Mishra, R. K., & Mohanty, K. (2020). Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals. Carbon Resources Conversion, 3, 145–155.

    Article  Google Scholar 

  • Mondal, S., Das, S., & Nandi, A. K. (2020). A review on recent advances in polymer and peptide hydrogels. Soft Matter, 16, 1404–1454.

    Article  CAS  Google Scholar 

  • Munoz-Cupa, C., Hu, Y., Xu, C. C., & Bassi, A. (2020). An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of the Total Environment, 754, 142429.

  • Nanda, S., & Berruti, F. (2021). Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 19, 123–148.

    Article  CAS  Google Scholar 

  • Nisticò, R. (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, 106707.

    Article  Google Scholar 

  • Nkwachukwu, O. I., Chima, C. H., Ikenna, A. O., & Albert, L. (2013). Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. International Journal of Industrial Chemistry, 4, 1–13.

    Article  Google Scholar 

  • Oh, D., Lee, H. W., Kim, Y.-M., & Park, Y.-K. (2018). Catalytic pyrolysis of polystyrene and polyethylene terephthalate over Al-MSU-F. Energy Procedia, 144, 111–117.

    Article  CAS  Google Scholar 

  • Özsin, G., & Pütün, A. E. (2018). A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: synergistic effects and product characteristics. Journal of Cleaner Production, 205, 1127–1138.

    Article  Google Scholar 

  • Paletta, A., Leal Filho, W., Balogun, A.-L., Foschi, E., & Bonoli, A. (2019). Barriers and challenges to plastics valorisation in the context of a circular economy: case studies from Italy. Journal of Cleaner Production, 241, 118149.

    Article  Google Scholar 

  • Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3, 443–461.

    Article  CAS  Google Scholar 

  • Pandey, S., Neupane, S., Gupta, D. K., Das, A. K., Karki, N., Singh, S., et al. (2021). Ce-doped PANI/Fe3O4 Nanocomposites: electrode materials for supercapattery. Frontiers in Chemical Engineering, 3, 15.

    Article  Google Scholar 

  • Patil, L., Varma, A. K., Singh, G., & Mondal, P. (2018). Thermocatalytic degradation of high density polyethylene into liquid product. Journal of Polymers and the Environment, 26, 1920–1929.

    Article  CAS  Google Scholar 

  • Rahman, M. H., Bhoi, P. R., Saha, A., Patil, V., & Adhikari, S. (2021). Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy, 225, 120231.

    Article  CAS  Google Scholar 

  • Rajkumar, P., and Somasundaram, M. (2020). Non-isothermal conversion of wheat husk and low-density polyethylene for energy dense fuel production. Biomass Conversion and Biorefinery, 12(12), 5695–5705.

  • Rajmohan, K. V. S., Ramya, C., Viswanathan, M. R., & Varjani, S. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12, 72–84.

    Article  Google Scholar 

  • Rasmussen, J. R., Stedronsky, E. R., & Whitesides, G. M. (1977). Introduction, modification, and characterization of functional groups on the surface of low-density polyethylene film. Journal of the American Chemical Society, 99, 4736–4745.

    Article  CAS  Google Scholar 

  • Rhee, S.-W. (2020). Management of used personal protective equipment and wastes related to COVID-19 in South Korea. Waste Management & Research, 38, 820–824.

    Article  CAS  Google Scholar 

  • Samak, N. A., Jia, Y., Sharshar, M. M., Mu, T., Yang, M., Peh, S., et al. (2020). Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 145, 106144.

    Article  CAS  Google Scholar 

  • Schirmeister, C. G., Hees, T., Licht, E. H., & Mülhaupt, R. (2019). 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28, 152–159.

    Article  CAS  Google Scholar 

  • Selvaraj, T., Perumal, V., Khor, S. F., Anthony, L. S., Gopinath, S. C., & Mohamed, N. M. (2020). The recent development of polysaccharides biomaterials and their performance for supercapacitor applications. Materials Research Bulletin, 126, 110839.

    Article  CAS  Google Scholar 

  • Sen, S. K., & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): a review. Journal of Environmental Chemical Engineering, 3, 462–473.

    Article  Google Scholar 

  • Shah, S., Venkatramanan, V., & Prasad, R. (2019). Microbial fuel cell: Sustainable green technology for bioelectricity generation and wastewater treatment. In Sustainable Green Technologies for Environmental Management (pp. 199–218). Springer.

    Chapter  Google Scholar 

  • Sharma, H. B., Vanapalli, K. R., Cheela, V. R. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., et al. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052.

    Article  Google Scholar 

  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308–326.

    Article  Google Scholar 

  • Shirvanimoghaddam, K., Balaji, K., Yadav, R., Zabihi, O., Ahmadi, M., Adetunji, P., et al. (2021). Balancing the toughness and strength in polypropylene composites. Composites Part B: Engineering, 223, 109121.

    Article  CAS  Google Scholar 

  • Singh, N., Hui, D., Singh, R., Ahuja, I., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: a state of art review and future applications. Composites Part B: Engineering, 115, 409–422.

    Article  CAS  Google Scholar 

  • Singh, N., Tang, Y., & Ogunseitan, O. A. (2020). Environmentally sustainable management of used personal protective equipment. Environmental science & technology, 54, 8500–8502.

    Article  CAS  Google Scholar 

  • Sophonrat, N., Sandström, L., Svanberg, R., Han, T., Dvinskikh, S., Lousada, C. U. M., et al. (2019). Ex situ catalytic pyrolysis of a mixture of polyvinyl chloride and cellulose using calcium oxide for HCl adsorption and catalytic reforming of the pyrolysis products. Industrial & Engineering Chemistry Research, 58, 13960–13970.

    Article  CAS  Google Scholar 

  • Tennakoon, A., Wu, X., Paterson, A. L., Patnaik, S., Pei, Y., LaPointe, A. M., et al. (2020). Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 3, 893–901.

    Article  CAS  Google Scholar 

  • Tian, Z., Stedman, M., Whyte, M., Anderson, S. G., Thomson, G., & Heald, A. (2020). Personal protective equipment (PPE) and infection among healthcare workers–What is the evidence? International journal of clinical practice, 74, e13617.

    Article  CAS  Google Scholar 

  • Tiso, T., Narancic, T., Wei, R., Pollet, E., Beagan, N., Schröder, K., et al. (2021). Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 66, 167–178.

    Article  CAS  Google Scholar 

  • Tomboc, G. M., & Kim, H. (2019). Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochimica Acta, 318, 392–404.

    Article  CAS  Google Scholar 

  • Trache, D., Thakur, V. K., & Boukherroub, R. (2020). Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials, 10, 1523.

    Article  CAS  Google Scholar 

  • Uzoejinwa, B. B., He, X., Wang, S., El-Fatah Abomohra, A., Hu, Y., & Wang, Q. (2018). Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Conversion and Management, 163, 468–492.

    Article  CAS  Google Scholar 

  • Velenturf, A. P., & Purnell, P. (2021). Principles for a sustainable circular economy. Sustainable Production and Consumption, 27, 1437–1457.

    Article  Google Scholar 

  • Wang, G., Lu, Z., Li, Y., Li, L., Ji, H., Feteira, A., et al. (2021). Electroceramics for high-energy density capacitors: current status and future perspectives. Chemical Reviews, 121, 6124–6172.

    Article  CAS  Google Scholar 

  • Wang, W., Themelis, N. J., Sun, K., Bourtsalas, A. C., Huang, Q., Zhang, Y., et al. (2019). Current influence of China’s ban on plastic waste imports. Waste Disposal & Sustainable Energy, 1, 67–78.

    Article  Google Scholar 

  • Wang, Z., Liu, X., Burra, K. G., Li, J., Zhang, M., Lei, T., et al. (2021). Towards enhanced catalytic reactivity in CO2-assisted gasification of polypropylene. Fuel, 284, 119076.

    Article  CAS  Google Scholar 

  • Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H., & Reddy, C. M. (2019). Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon. Environmental science & technology letters, 6, 669–674.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, H., Zhou, X., Cao, X., & Li, X. (2021). Simultaneous copper migration and removal from soil and water using a three-chamber microbial fuel cell. Environmental technology, 42(28), 4519–4527.

  • Zhang, Q., Khan, M. U., Lin, X., Cai, H., & Lei, H. (2019). Temperature varied biochar as a reinforcing filler for high-density polyethylene composites. Composites part b: engineering, 175, 107151.

    Article  CAS  Google Scholar 

  • Zhang, Q., Yi, W., Li, Z., Wang, L., & Cai, H. (2018). Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10, 286.

    Article  CAS  Google Scholar 

  • Zhao, W., Kundu, C. K., Li, Z., Li, X., & Zhang, Z. (2021). Flame retardant treatments for polypropylene: strategies and recent advances. Composites Part A: Applied Science and Manufacturing, 145, 106382.

    Article  CAS  Google Scholar 

  • Zhou, L., Zou, H., Wang, Y., Le, Z., Liu, Z., & Adesina, A. A. (2017). Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene. Renewable Energy, 102, 134–141.

    Article  CAS  Google Scholar 

  • Zhou, N.-Y., Yang, L., Dong, L.-Y., Li, Y., An, X.-J., Yang, J., et al. (2020). Prevention and treatment of skin damage caused by personal protective equipment: experience of the first-line clinicians treating SARS-CoV-2 infection. International Journal of Dermatology and Venereology, 3, 70–75.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dawood University of Engineering and Technology for providing laboratory facilities and chemicals for research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in writing the whole manuscript and done proofreading.

Corresponding authors

Correspondence to Abdul Sattar Jatoi or Nabisab Mujawar Mubarak.

Ethics declarations

Ethics Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

N/A.

Conflict of Interest

The authors declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, A.S., Ahmed, J., Mubarak, N.M. et al. A Comprehensive Review on Handling of Plastic Waste For Energy Generation—Current Status and Future Challenges. Water Air Soil Pollut 234, 773 (2023). https://doi.org/10.1007/s11270-023-06784-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06784-w

Keywords

Navigation