Skip to main content
Log in

Assessing the Topsoil Contamination of Cesium-137 Environmental Fallout in Konya, Turkey: Spatial Distribution and Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Although more than 30 years have passed since the Chernobyl accident, artificial radionuclides are still present in the soil. Especially, 137Cs is harmful to human health and contamination due to 137Cs is high. The topsoil samples were collected from various locations in Konya, Turkey. 137Cs activity concentrations were measured using coaxial high-purity germanium gamma-ray spectrometry. 137Cs activity concentrations in the surface soil samples ranged from 0.74 ± 0.08 to 12.88 ± 0.86 Bq kg−1 dry weight (d.w.). The absorbed dose rate and the annual effective dose rates for outdoor and indoor air were estimated. The mean values of the absorbed dose rate and the outdoor and the indoor annual effective dose rates were found as 0.09 nGy h−1, 0.11 μSv y−1, and 0.43 μSv y−1, respectively. The obtained activity concentrations and annual effective dose rates were compared with other studies. The spatial distributions of 137Cs activity concentrations and dose rates were plotted using the Surfer Program. The Kriging interpolation method is used to obtain the distribution maps of 137Cs radionuclide. Frequency distribution and quantile-quantile plots were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The raw data is available on request from authors.

References

  • Aközcan, S. (2014). Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environmental Earth Sciences, 71(10), 4611–4614. https://doi.org/10.1007/s12665-013-2861-6

    Article  CAS  Google Scholar 

  • Aközcan, S., Külahcı, F., & Mercan, Y. (2018). A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: Spatial distribution modelling. Journal of hazardous materials, 353, 476–489. https://doi.org/10.1016/j.jhazmat.2018.04.042

    Article  CAS  Google Scholar 

  • Alsaadi, S. D., Zaid, M., AL-abrdi, A. M., & Mussa, J. (2020). Evaluation of absorbed dose rate and annual effective dose of Cesium 137 and its soil-to-plant transfer factor in the Gandula Region, Libya. Libyan Journal of Basic Sciences (LJBS), 12(1), 51–63

    Google Scholar 

  • Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., & Balkhair, K. S. (2014). Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical Reviews in Environmental Science and Technology, 44(15), 1740–1793. https://doi.org/10.1080/10643389.2013.790753

    Article  CAS  Google Scholar 

  • Baltas, H., Sirin, M., Dalgic, G., & Cevik, U. (2018). An overview of the ecological half-life of the 137Cs radioisotope and a determination of radioactivity levels in sediment samples after Chernobyl in the Eastern Black Sea, Turkey. Journal of Marine Systems, 177, 21–27. https://doi.org/10.1016/j.jmarsys.2017.09.005

    Article  Google Scholar 

  • Begy, R. C., Simon, H., Vasilache, D., Kelemen, S., & Cosma, C. (2017). 137Cs contamination over Transylvania region (Romania) after Chernobyl nuclear power plant accident. Science of The Total Environment, 599, 627–636. https://doi.org/10.1016/j.scitotenv.2017.05.019

    Article  CAS  Google Scholar 

  • Bernhardsson, C., Rääf, C. L., & Mattsson, S. (2015). Spatial variability of the dose rate from 137Cs fallout in settlements in Russia and Belarus more than two decades after the Chernobyl accident. Journal of Environmental Radioactivity, 149, 144–149. https://doi.org/10.1016/j.jenvrad.2015.07.009

    Article  CAS  Google Scholar 

  • Bilici, A., Kocak, I., Bilici, S., Kamislioglu, M., Aközcan, S., Buyuk, B., & Özden, S. (2023). Determination of radionuclides concentrations in surface soil samples in the district of Bandirma, Balıkesir. Environmental Forensics, 1-14. https://doi.org/10.1080/15275922.2023.2218662

  • Bingöldağ, N., & Otansev, P. (2020). Spatial distribution of natural and artificial radioactivity concentrations in soil samples and statistical approach, Nevşehir, Turkey. Radiochimica Acta, 108(11), 913–921. https://doi.org/10.1515/ract-2020-0061

    Article  CAS  Google Scholar 

  • Bunzl, K., Schimmack, W., Krouglov, S. V., & Alexakhin, R. M. (1995). Changes with time in the migration of radiocesium in the soil, as observed near Chernobyl and in Germany, 1986–1994. Science of the Total Environment, 175(1), 49–56. https://doi.org/10.1016/0048-9697(95)04842-1

    Article  CAS  Google Scholar 

  • Çam Kaynar, S. (2018). Annual effective dose values from 137 Cs activity concentrations in soils of Manisa, Turkey. Nuclear Science and Techniques, 29, 1–7. https://doi.org/10.1007/s41365-018-0440-y

    Article  CAS  Google Scholar 

  • Çelik, N., Damla, N., & Çevik, U. (2010). Gamma ray concentrations in soil and building materials in Ordu, Turkey. Radiation Effects & Defects in Solids: Incorporating Plasma Science & Plasma Technology, 165(1), 1–10. https://doi.org/10.1080/10420150903173270

    Article  CAS  Google Scholar 

  • Cevik, U., & Celik, N. (2009). Ecological half-life of 137Cs in mosses and lichens in the Ordu province, Turkey by Cevik and Celik. Journal of Environmental Radioactivity, 100(1), 23–28. https://doi.org/10.1016/j.jenvrad.2008.09.010

    Article  CAS  Google Scholar 

  • Cevik, U., Damla, N., Karahan, G., Celebi, N., & Kobya, A. I. (2006). Natural radioactivity in tap waters of Eastern Black Sea region of Turkey. Radiation Protection Dosimetry, 118(1), 88–92. https://doi.org/10.1093/rpd/nci325

    Article  CAS  Google Scholar 

  • Chen, K., Ni, M., Cai, M., Wang, J., Huang, D., Chen, H., Wang, X., & Liu, M. (2016). Optimization of a coastal environmental monitoring network based on the Kriging method: A case study of Quanzhou Bay, China. BioMed research international, 2016. https://doi.org/10.1155/2016/7137310

  • Damla, N., Altun, A., Yesilkanat, C. M., Taskin, H., Kara, A., & Isık, U. (2023). Spatial distribution modeling of radiometric analysis and radiation dose estimations in drinking water and soil samples from Siirt city in Türkiye. Human and Ecological Risk Assessment: An International Journal, 29(7–8), 1044–1063. https://doi.org/10.1080/10807039.2023.2231549

    Article  CAS  Google Scholar 

  • Declercq, F. A. N. (1996). Interpolation methods for scattered sample data: Accuracy, spatial patterns, processing time. Cartography and Geographic Information Systems, 23(3), 128–144. https://doi.org/10.1559/152304096782438882

    Article  Google Scholar 

  • Duyssembaev, S., Serikova, A., Okuskhanova, E., Ibragimov, N., Bekturova, N., Ikimbayeva, N., Rebezov, Y., Gorelik, O., & Baybalinova, M. (2017). Determination of Cs-137 concentration in some environmental samples around the Semipalatinsk nuclear test site in the Republic of Kazakhstan. Annual Research & Review in Biology, 15(4), 1–8. https://doi.org/10.9734/ARRB/2017/35239

    Article  Google Scholar 

  • El Samad, O., Zahraman, K., Baydoun, R., & Nasreddine, M. (2007). Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident. Journal of Environmental Radioactivity, 92(2), 72–79. https://doi.org/10.1016/j.jenvrad.2006.09.008

    Article  CAS  Google Scholar 

  • Facchinelli, A., Magnoni, M., Gallini, L., & Bonifacio, E. (2002). 137 Cs contamination from Chernobyl of soils in Piemonte (North-West Italy): Spatial distribution and deposition model. Water, Air, and Soil Pollution, 134, 339–350. https://doi.org/10.1023/A:1014135717747

    Article  Google Scholar 

  • Ferenbaugh, J. K., Fresquez, P. R., Ebinger, M. H., Gonzales, G. J., & Jordan, P. A. (2002). Radionuclides in soil and water near a low-level disposal site and potential ecological and human health impacts. Environmental Monitoring and Assessment, 74, 243–254. https://doi.org/10.1023/A:1014232529482

    Article  CAS  Google Scholar 

  • Howard, B. J., Beresford, N. A., Copplestone, D., Telleria, D., Proehl, G., Fesenko, S., Jeffree, R. A., Yankovich, T. L., Brown, J. E., Higley, K., Johansen, M. P., Mulye, H., Vandenhove, H., Gashchak, S., Wood, M. D., Takata, H., Andersson, P., Dale, P., Rya, J., … Wells, C. (2013). The IAEA handbook on radionuclide transfer to wildlife. Journal of Environmental Radioactivity, 121, 55–74. https://doi.org/10.1016/j.jenvrad.2012.01.027

    Article  CAS  Google Scholar 

  • Isinkaye, M. O., & Ajiboye, Y. (2022). Natural radioactivity in surface soil of urban settlements in Ekiti State, Nigeria: Baseline mapping and the estimation of radiological risks. Arabian Journal of Geosciences, 15(6), 557. https://doi.org/10.1007/s12517-022-09835-4

    Article  CAS  Google Scholar 

  • Karadeniz, Ö., & Yaprak, G. (2007). Dynamic equilibrium of radiocesium with stable cesium within the soil–mushroom system in Turkish pine forest. Environmental Pollution, 148(1), 316–324. https://doi.org/10.1016/j.envpol.2006.10.042

    Article  CAS  Google Scholar 

  • Khan, H. M., Ismail, M., Khan, K., & Akhter, P. (2011). Measurement of radionuclides and gamma-ray dose rate in soil and transfer of radionuclides from soil to vegetation, vegetable of some Northern area of Pakistan using γ-ray spectrometry. Water, Air, & Soil Pollution, 219, 129–142. https://doi.org/10.1007/s11270-010-0693-5

    Article  CAS  Google Scholar 

  • Lind, O. C. (2006). Characterisation of radioactive particles in the environment using advanced techniques. Norwegian University of Life Sciences, Department of Plant and Environmental Sciences

    Google Scholar 

  • Master, A. (2022). Determining the specific activity of radioactive isotopes of, 226Ra, 228A, 40K, 137Cs in the soils of selected areas of Najaf city-Central Iraq. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1–7). https://doi.org/10.1109/HORA55278.2022.9799995

    Chapter  Google Scholar 

  • Miller, M. O., & Tsabaris, C. (2018). Distribution of Cs-137 and dose rate investigation in the terrestrial environment of Jamaica. SDRP Journal of Earth Sciences & Environmental Studies, 68, 3–2. https://doi.org/10.25177/JESES.3.2.5

    Article  Google Scholar 

  • Mireles-Garcia, F., Davila-Rangel, I., Rios-Martinez, C., Pinedo-Vega, J. L., Valdez-Arteaga, M. G., & Flores-Ocampo, F. E. (2021). 137 Cs concentration in soil of the municipality of Guadalupe, Zacatecas, Mexico, before and after the Fukushima Daiichi nuclear power plant accident. Journal of Radioanalytical and Nuclear Chemistry, 327, 1259–1265. https://doi.org/10.1007/s10967-021-07595-1

    Article  CAS  Google Scholar 

  • Mück, K. (1991). Global fallout after the Chernobyl accident (No. OEFZS--4595). Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria). Inst. fuer Strahlenschutz

    Google Scholar 

  • Murphy, J. M., Mason, C. F., Boak, J. M., & Longmire, P. A. (1996). Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall (No. LA-UR-96-633; CONF-960212-72). Los Alamos National Lab.(LANL). https://www.osti.gov/biblio/216271. Accessed 29 Apr 2023.

  • Muthu, H., Ramesh, K., Ramesh, S., & Bashir, S. (2023). Dose assessment of 137Cs in agricultural surface soil in Selangor, Malaysia. International. Journal of Radiation Research, 21(1), 97–103. https://doi.org/10.52547/ijrr.21.1.13

    Article  Google Scholar 

  • Nguyen, T. N., Bui, V. L., Duong, V. H., Leuangtakoun, S., Hoang, H. D., Duong, D. T., Le, N. T., Nguyen, D. K., Tran, D. K., & Tran, H. N. (2023). Distribution and characteristics of 137Cs in surface soil in the middle of Laos. Journal of Radioanalytical and Nuclear Chemistry, 332(9), 3661–3673. https://doi.org/10.1007/s10967-023-09051-8

    Article  CAS  Google Scholar 

  • Nuhanović, M., Šehović, E., Smječanin, N., Hodžić, D., & Vinković, A. (2022). Assessment of natural and anthropogenic radionuclides in urban soil of Sarajevo (Bosnia and Herzegovina). Radiochemistry, 64(3), 416–423. https://doi.org/10.1134/S1066362222030201

    Article  Google Scholar 

  • Oğuz, F., Arıkan, İ. H., & Yücel, B. (2013). Türkiye çevresel radyoaktivite atlasıhttps://kurumsalarsiv.tenmak.gov.tr/handle/20.500.12878/225. Accessed 25 Apr 2023.

  • Ozaydin Ozkara, R., Eke, C., & Boztosun, I. (2021). A study on the activity concentrations of 226 Ra, 232 Th, 40 K, 137 Cs and radiological risk assessments in soil samples from Seydisehir and Beysehir districts of Konya in Turkey. Journal of Radioanalytical and Nuclear Chemistry, 330, 1017–1025. https://doi.org/10.1007/s10967-021-08046-7

    Article  CAS  Google Scholar 

  • Özden, S. (2022). 137Cs concentration in soils collected from Bulgaria-Turkey Border Region. Avrupa Bilim ve Teknoloji Dergisi, 33, 244–250. https://doi.org/10.31590/ejosat.1055855

    Article  Google Scholar 

  • Özden, S., & Aközcan Pehlivanoğlu, S. (2023). Seasonal variation of the activity concentrations of 137Cs in agricultural areas of Kirklareli, Turkey. Natural Hazards, 1-16. https://doi.org/10.1007/s11069-023-06219-z

  • Özden, S., & Aközcan, S. (2021). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). Arabian Journal of Geosciences, 14, 64. https://doi.org/10.1007/s12517-020-06446-9

    Article  CAS  Google Scholar 

  • Özden, S., Aközcan, S., & Günay, O. (2023). 137Cs in soils from İstanbul (Turkey) sampled 35 years after Chernobyl. Environmental Forensics, 1-7. https://doi.org/10.1080/15275922.2023.2218299

  • Paller, M. H., Jannik, G. T., & Baker, R. A. (2014). Effective half-life of caesium-137 in various environmental media at the Savannah River Site. Journal of Environmental Radioactivity, 131, 81–88. https://doi.org/10.1016/j.jenvrad.2013.10.024

    Article  CAS  Google Scholar 

  • Petrović, J., Ćujić, M., Đorđević, M., Dragović, R., Gajić, B., Miljanić, Š, & Dragović, S. (2013). Spatial distribution and vertical migration of 137 Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident. Environmental Science: Processes & Impacts, 15(6), 1279–1289. https://doi.org/10.1039/C3EM00084B

    Article  Google Scholar 

  • Rafique, M. (2014). Cesium-137 activity concentrations in soil and brick samples of Mirpur, Azad Kashmir, Pakistan. International Journal of Radiation Research, 12(1), 39

    Google Scholar 

  • Saenko, V., Ivanov, V., Tsyb, A., Bogdanova, T., Tronko, M., Demidchik, Y., & Yamashita, S. (2011). The Chernobyl accident and its consequences. Clinical Oncology, 23(4), 234–243. https://doi.org/10.1016/j.clon.2011.01.502

    Article  CAS  Google Scholar 

  • Shabaka, A. N., Omar, A., El-Mongy, S. A., & Tawfic, A. F. (2022). Analysis of natural radionuclides and 137Cs using HPGe spectrometer and radiological hazards assessment for Al-Nigella site, Egypt. International Journal of Environmental Analytical Chemistry, 102(2), 575–588. https://doi.org/10.1080/03067319.2020.1724985

    Article  CAS  Google Scholar 

  • Şireci, N., Aslan, G., & Cakir, Z. (2021). Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences, 30(5), 681–697. https://doi.org/10.3906/yer-2104-22

    Article  Google Scholar 

  • Strumińska-Parulska, D., & Falandysz, J. (2020). A review of the occurrence of alpha-emitting radionuclides in wild mushrooms. International Journal of Environmental Research and Public Health, 17(21), 8220. https://doi.org/10.3390/ijerph17218220

    Article  CAS  Google Scholar 

  • Top, G., Örgün, Y., Ayazlı, I. E., Belivermiş, M., Karacık, Z., & Kampfl, G. (2021). Determination of Ra-226, Th-232, K-40 and Cs-137 activities in soils and beach sands and related external gamma doses in Arikli mineralization area (Ayvacik/Turkey). Radiation protection dosimetry, 193(3–4), 137–154. https://doi.org/10.1093/rpd/ncab035

    Article  CAS  Google Scholar 

  • Tserendorj, D., Zsuzsanna Szabó Szabó, K., Völgyesi Völgyesi, P., Abbaszade, G., Le Tan Tan, D., Salazar, N., Zacháry, D., Nguyen, T., & Szabó, C. (2021). Comparative study of Cs-137 activity concentration between attic dust and urban soil from Salgotarjan city, Hungary. EGU General Assembly Conference Abstracts, (pp. EGU21-16233). https://doi.org/10.5194/egusphere-egu21-16233

    Book  Google Scholar 

  • Tulashvili, E. V., & Kalandadze, B. B. (2022). Gamma-spectroscopy measurements of radioactivity and assessment of radiation hazard indices in soil samples from some regions of the Black Sea Coast. Radiobiology and Radiation Safety, 2(3). https://radiobiology.ge/index.php/rrs/article/view/4845. Accessed 26 Apr 2023.

  • United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report

    Book  Google Scholar 

  • Wai, K. M., Krstic, D., Nikezic, D., Lin, T. H., & Yu, P. K. (2020). External Cesium-137 doses to humans from soil influenced by the Fukushima and Chernobyl nuclear power plants accidents: A comparative study. Scientific Reports, 10(1), 7902. https://doi.org/10.1038/s41598-020-64812-9

    Article  CAS  Google Scholar 

  • Ylipieti, J., Rissanen, K., Kostiainen, E., Salminen, R., Tomilina, O., Täht, K., Gilucis, A., & Gregorauskiene, V. (2008). Chernobyl fallout in the uppermost (0–3 cm) humus layer of forest soil in Finland, North East Russia and the Baltic countries in 2000–2003. Science of the Total Environment, 407(1), 315–323. https://doi.org/10.1016/j.scitotenv.2008.08.035

    Article  CAS  Google Scholar 

  • Yoshimura, K. (2022). Air dose rates and cesium-137 in urban areas—Deposition, migration, and time dependencies after nuclear power plant accidents. Journal of Nuclear Science and Technology, 59(1), 25–33. https://doi.org/10.1080/00223131.2021.1973608

    Article  CAS  Google Scholar 

  • Zhidkin, A. P., Shamshurina, E. N., Golosov, V. N., Komissarov, M. A., Ivanova, N. N., & Ivanov, M. M. (2020). Detailed study of post-Chernobyl Cs-137 redistribution in the soils of a small agricultural catchment (Tula region, Russia). Journal of Environmental Radioactivity, 223, 106386. https://doi.org/10.1016/j.jenvrad.2020.106386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Günay.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günay, O., Özden, S. & Pehlivanoğlu, S.A. Assessing the Topsoil Contamination of Cesium-137 Environmental Fallout in Konya, Turkey: Spatial Distribution and Analysis. Water Air Soil Pollut 234, 763 (2023). https://doi.org/10.1007/s11270-023-06781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06781-z

Keywords

Navigation