Skip to main content
Log in

Levels and Health Risks of Heavy Metals and Organochlorine Pesticide Residues in Soil and Drinking Water of Flood-Prone Residential Area of Lagos, Nigeria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Environmental pollution arises from the myriad of chemicals in current and historic applications. In Nigeria, the fate of pollutants among other factors relies on water runoffs with pollution implications on the flooded environment. In addition, there is a need for applications of pesticides against disease vectors in a flood-prone environment, therefore increasing pollution complications in the environment. Literature information is missing regarding the levels and public health risk implications of contaminants such as heavy metals and organochlorine pesticide (OCP) residues in groundwater and residential soils within the selected flood-prone residential locations in Lagos, Nigeria. This study was hence targeted at examining the levels and health risks of heavy metals and OCP residues in residential soils and groundwater sources of the targeted environment. Seven heavy metals comprising Cd, Zn, Fe, Pb, Cu, Ni, and Co were detected in the water samples with high concentrations of iron (mean = 22,000 mg/kg) and Zn (mean = 810 mg/kg). Only Fe (mean = 5.8 µg/L) and Zn (mean = 2.6 µg/L) were detected in the groundwater samples. Fifteen OCP residues were observed in the soil samples within the concentration range of 7.9 to 13 (mean = 11) mg/kg while seven OCP residues were reported in the groundwater samples within the concentration range of 0.19 to 0.35 (mean = 0.24) mg/kg. There was a concern about high contamination of dieldrin and heptachlor epoxide in the groundwater sources with concentrations exceeding the WHO (2017) drinking water guideline. A significant Pearson correlation (< 0.05) was obtained for endrin and endosulfan I in water and soil samples indicating potential contamination of groundwater from soil sources. The diagnostic ratio indicated possible applications of endosulfan and some other OCP residues. Overall, our data indicated low health risk implications for all the targeted contaminants. We recommend continuous investigation of newly listed priority chemicals such as dicofol and more public engagement on the implication of environmental pollution and health impacts of regulated chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included in the article as well as in the supplementary file.

References

  • Abellan, A., Sunyer, J., Garcia-Esteban, R., Basterrechea, M., Duarte-Salles, T., Ferrero, A., Garcia-Aymerich, J., Gascon, M., Grimalt, J. O., Lopez-Espinosa, M., Zabaleta, C., Vrijheid, M., & Casas, M. (2019). Prenatal exposure to organochlorine compounds and lung function during childhood. Environment International, 131, 105049. https://doi.org/10.1016/j.envint.2019.105049

    Article  CAS  Google Scholar 

  • Abolhassani, M., Asadikaram, G., Paydar, P., Fallah, H., Aghaee-Afshar, M., Moazed, V., Akbari, H., Moghaddam, S. D., & Moradi, A. (2019). Organochlorine and organophosphorous pesticides may induce colorectal cancer; a case-control study. Ecotoxicology and Environmental Safety, 178, 168–177. https://doi.org/10.1016/j.ecoenv.2019.04.030

    Article  CAS  Google Scholar 

  • Adelekan, B. A., & Abegunde, K. D. (2011). Heavy Metals Contamination of Soil and Groundwater at Automobile Mechanic Villages in Ibadan, Nigeria. International Journal of the Physical Sciences, 6(5), 1045–1058.

    CAS  Google Scholar 

  • Adeyemi, D., Anyakora, C., Ukpo, G., & Adedayo, A. (2011). Evaluation of the levels of organochlorine pesticide residues in water samples of Lagos lagoon using solid phase extraction method. Journal of Environmental Chemistry & Ecotoxicology, 3(6), 160–166.

    CAS  Google Scholar 

  • Affum, A. O., Acquaah, S. O., Osae, S. D., & Kwaansa-Ansah, E. E. (2018). Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana. Science of the Total Environment, 633, 630–640. https://doi.org/10.1016/j.scitotenv.2018.03.129

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (2005). Standard Methods for the Examination of Water & Wastewater. Washington DC.

  • Ahmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A., & Pal, S. K. (2020). Combating essential metal toxicity: Key information from optical spectroscopy. ACS Omega. https://doi.org/10.1021/acsomega.0c01898

    Article  Google Scholar 

  • Alani, R., Drouillard, K., Kehinde, O., & Alo, B. (2013). Bioaccumulation of organochlorine pesticide residues in fish and invertebrates of Lagos lagoon. American Journal of Scientific & Industrial Research, 4(1), 22–30.

    Article  CAS  Google Scholar 

  • Ashraf, S., Rizvi, N. B., Rasool, A., Mahmud, T., Huang, G. G., & Zulfajri, M. (2020). Evaluation of heavy metal ions in the groundwater samples from selected automobile workshop areas in northern Pakistan. Groundwater for Sustainable Development, 11, 100428. https://doi.org/10.1016/j.gsd.2020.100428

    Article  Google Scholar 

  • Ayejoto, D. A., Agbasi, J. C., Egbueri, J. C., & Abba, S. (2023). Evaluation of oral and dermal health risk exposures of contaminants in groundwater resources for nine age groups in two densely populated districts. Nigeria. Heliyon, 9(4), e15483. https://doi.org/10.1016/j.heliyon.2023.e15483

    Article  CAS  Google Scholar 

  • Ayejuyo, O. O., Williams, A. B., & Igbasan, S. O. (2008). Assessment of organochlorine pesticide residues in irrigation groundwater of Lagos. Journal of Chemical Society of Nigeria, 33(1), 65–69.

    CAS  Google Scholar 

  • Ayobami, A. O. (2022). An assessment of trace metal pollution indicators in soils around oil well clusters. Petroleum Research, 7(2), 275–285. https://doi.org/10.1016/j.ptlrs.2021.09.001

    Article  CAS  Google Scholar 

  • Bhandari, G., Atreya, K., Scheepers, P.T.J., & Geissen, V. (2020). Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere, 253, 126594. https://doi.org/10.1016/j.chemosphere.2020.126594

  • Birth, G.A. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C.D. Woodcoffe, & R. A. Furness (Eds.), Coastal GIS 2003, Wollongong University Papers in Centre for Maritime Policy,14, Wollongong.

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  • Cantu-Soto, E. U., Meza-Montenegro, M. M., Valenzuela-Quintanar, A. I., Félix-Fuentes, A., Grajeda-Cota, P., Balderas-Cortes, J. J., Osorio-Rosas, J. J., Acuna-Garcia, G., & Aguilar-Apodaca, M. G. (2011). Residues of organochlorine pesticides in soils from the Southern Sonora, Mexico. Bulletin of Environmental Contamination & Toxicology, 87(5), 556–560. https://doi.org/10.1007/s00128-011-0353-5

    Article  CAS  Google Scholar 

  • Chaza, C., Sopheak, N., Mariam, H., David, D., Baghdad, O., & Moomen, B. (2017). Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environmental Science & Pollution Research, 25(15), 14302–14312. https://doi.org/10.1007/s11356-017-8568-6

    Article  CAS  Google Scholar 

  • Chen, W., Jing, M., Bu, J., Burnet, J. E., Qi, S., Song, Q., Ke, Y., Miao, J., Liu, M., & Yang, C. (2011). Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: A study of an arid zone in Central Asia. Environmental Monitoring & Assessment, 177, 1–21. https://doi.org/10.1007/s10661-010-1613-2

    Article  CAS  Google Scholar 

  • Chen, L., Qian, Y., Jia, Q., Weng, R., Zhang, X., Li, Y., & Qiu, J. (2023). A national-scale distribution of organochlorine pesticides (OCPs) in cropland soils and major types of food crops in China: Co-occurrence and associated risks. Science of the Total Environment, 861, 160637. https://doi.org/10.1016/j.scitotenv.2022.160637

    Article  CAS  Google Scholar 

  • Chen, W., Zeng, F., Liu, W., Bu, J., Hu, G., Xie, S., Yao, H., Zhou, H., Qi, S., & Huang, H. (2021). Organochlorine pesticides in karst soil: Levels, distribution, and source diagnosis. International Journal of Environmental Research and Public Health, 18(21). 11589. https://doi.org/10.3390/ijerph182111589

  • Cho, I.-G., Park, M.-K., Cho, H.-K., Jeon, J.-W., Lee, S.-E., & Choi, S.-D. (2019). Characteristics of metal contamination in paddy soils from three industrial cities in South Korea. Environmental Geochemistry & Health. https://doi.org/10.1007/s10653-019-00246-1

    Article  Google Scholar 

  • Chomba, I. C., Banda, K. E., Winsemius, H. C., Eunice, M., Sichingabula, H. M., & Nyambe, I. A. (2022). Integrated hydrologic-hydrodynamic inundation modeling in a groundwater dependent tropical floodplain. Journal of Human, Earth, and Future, 3(2), 237–246. https://doi.org/10.28991/HEF-2022-03-02-09

    Article  Google Scholar 

  • Close, M. E., Humphries, B., & Northcott, G. (2021). Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Science of the Total Environment, 754, 142005. https://doi.org/10.1016/j.scitotenv.2020.142005

    Article  CAS  Google Scholar 

  • Dardiotis, E., Aloizou, A., Sakalakis, E., Siokas, V., Koureas, M., Xiromerisiou, G., Petinaki, E., Wilks, M., Tsatsakis, A., Hadjichristodoulou, C., Stefanis, L., & Hadjigeorgiou, G. M. (2020). Organochlorine pesticide levels in Greek patients with Parkinson’s disease. Toxicology Reports, 7, 596–601. https://doi.org/10.1016/j.toxrep.2020.03.011

    Article  CAS  Google Scholar 

  • De Lima Neto, E., Guerra, M.B.B., Thomazini, A., Daher, M., de Andrade, A.M., & Schaefer, C.E.G.R. (2017). Soil contamination by toxic metals near an Antarctic refuge in Robert Island, Maritime Antarctica: A monitoring strategy. Water, Air, & Soil Pollution, 228, 66.https://doi.org/10.1007/s11270-017-3245-4

  • Devi, N. L., Chakraborty, P., Shihua, Q., & Zhang, G. (2013). Selected organochlorine pesticides (OCPs) in surface soils from three major states from the Northeastern Part of India. Environmental Monitoring & Assessment, 185, 6667–6676.

    Article  CAS  Google Scholar 

  • Doong, R.-A., Sun, Y.-C., Liao, P.-L., Peng, C.-K., & Wu, S.-C. (2002). Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere, 48(2), 237–246. https://doi.org/10.1016/S0045-6535(02)00066-8

  • Dores, E. F. G. C., Spadotto, C. A., Weber, O. L. S., Dalla Villa, R., Vecchiato, A. B., & Pinto, A. A. (2015). Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil. Journal of Agricultural and Food Chemistry, 64(20), 3942–3948. https://doi.org/10.1021/acs.jafc.5b04508

    Article  CAS  Google Scholar 

  • Duz, M. Z., Sagirdag, M., Çelik, K. S., Hasan, M. A., & Kilinç, E. (2016). Geochemical multi-element ICP-OES analysis of borehole waters from SE Anatolia. Atomic Spectroscopy, 37(2), 43–49.

    Article  CAS  Google Scholar 

  • Egbe, C. C., Oyetibo, G. O., & Ilori, M. O. (2021). Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicology & Environmental Safety, 207, 111319. https://doi.org/10.1016/j.ecoenv.2020.111319

    Article  CAS  Google Scholar 

  • Egorova, K. S., & Ananikov, V. P. (2017). Toxicity of metal compounds: Knowledge and myths. Organometallics, 36(21), 4071–4090. https://doi.org/10.1021/acs.organomet.7b00605

    Article  CAS  Google Scholar 

  • Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M., & Barani, A. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geoscience Frontiers, 13(1), 101276. https://doi.org/10.1016/j.gsf.2021.101276

    Article  CAS  Google Scholar 

  • Femina, C. C., Kamalesh, T., Kumar, S. P., & Rangasamy, G. (2023). An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. Environmental Pollution, 333, 122114. https://doi.org/10.1016/j.envpol.2023.122114

    Article  CAS  Google Scholar 

  • Gandla, V., Chiluka, M., Gupta, H., Sinha, S. N., & Chakraborty, P. (2023). Sediment-water partitioning and risk assessment of organochlorine pesticides along the urban, peri-urban and rural transects of Krishna River Basin, Peninsular India. Science of the Total Environment, 874, 162360. https://doi.org/10.1016/j.scitotenv.2023.162360

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control—A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Han, I., Whitworth, K. W., Christensen, B., Afshar, M., An Han, H., Rammah, A., Oluwadairo, T., & Symanski, E. (2022). Heavy metal pollution of soils and risk assessment in Houston. Texas following Hurricane Harvey. Environmental Pollution, 296, 118717. https://doi.org/10.1016/j.envpol.2021.118717

    Article  CAS  Google Scholar 

  • Jayashree, R., & Vasudev, N. (2007). Organochlorine pesticide residues in ground water of Thiruvalllur district, India. Environmental Monitoring & Assessment, 128, 209–215.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668. https://doi.org/10.1016/j.chemosphere.2016.11.088

    Article  CAS  Google Scholar 

  • Kakulu, S. E., & Osibanjo, O. (1988). Trace heavy metal pollutional studies in sediments of the Niger Delta area of Nigeria. Journal of Chemical Society of Nigeria, 13, 9–15.

    Google Scholar 

  • Khuman, S. N., Park, M., Kim, H., Hwang, S., Lee, C., & Choi, S. (2022). Organochlorine pesticides in the urban, suburban, agricultural, and industrial soil in South Korea after three decades of ban: Spatial distribution, sources, time trend, and implicated risks. Environmental Pollution, 311, 119938. https://doi.org/10.1016/j.envpol.2022.119938

    Article  CAS  Google Scholar 

  • Kim, H. S., Kim, Y. J., & Seo, Y. R. (2015). An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20(4), 232–240. https://doi.org/10.15430/JCP.2015.20.4.232

    Article  Google Scholar 

  • Kim, L., Jeon, J., Son, J., Kim, C., Ye, J., Kim, H., Lee, C., Hwang, S., & Choi, S. (2020). Nationwide levels and distribution of endosulfan in air, soil, water, and sediment in South Korea. Environmental Pollution, 265, 115035. https://doi.org/10.1016/j.envpol.2020.115035

    Article  CAS  Google Scholar 

  • Kuang, Z., Gu, Y., Rao, Y., & Huang, H. (2021). Biological risk assessment of heavy metals in sediments and health risk assessment in marine organisms from Daya Bay, China. Journal of Marine Science & Engineering, 9(1), 17. https://doi.org/10.3390/jmse9010017

    Article  Google Scholar 

  • Lee, K. T., Tanabe, S., & Koh, C. H. (2001). Distribution of organochlorine pesticides in sediments from Kyeonggi Bay and nearby areas, Korea. Environmental Pollution, 114, 207–213.

    Article  CAS  Google Scholar 

  • Lu, H., & Liu, W. (2016). Distribution characteristics of organochlorine pesticides in soil, water, and sediment from the Bahe River. China, Environmental Forensics, 17(1), 80–86. https://doi.org/10.1080/15275922.2015.1133731

    Article  CAS  Google Scholar 

  • Mor, S., Vig, N. & Ravindra, K. (2022). Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health. Environmental Monitoring & Assessment, 194, 263. https://doi.org/10.1007/s10661-021-09692-w.

  • National Agency for Food and Drug Administration and Control (NAFDAC) (2017). List of banned pesticides. Retrieved March 8, 2022, from https://www.nafdac.gov.ng/wp-content/uploads/Files/Resources/Directorate_Resources/VMAP/LIST-OF-BANNED-PESTICIDES.pdf

  • Navarrete, I.A., Tee, K.A.M., Unson, J.R.S., & Hallare, A.V. (2018). Organochlorine pesticide residues in surface water and groundwater along Pampanga River, Philippines. Environmental Monitoring & Assessment, 190(5), 289. https://doi.org/10.1007/s10661-018-6680-9

  • Oguntade, O.A., Adegbuyi, A.A., Nassir, A.L., Olagunju, S.O., Salami, W.A., & Adewale, R.O. (2020). Geoassessment of heavy metals in rural and urban floodplain soils: Health implications for consumers of Celosia argentea and Corchorus olitorius vegetables in Sagamu, Nigeria. Environmental Monitoring & Assessment, 192(3), 164. https://doi.org/10.1007/s10661-020-8077-9

  • Okereke, C. J., & Amadi, P. U. (2017). Accumulation and risk assessment of heavy metal contents in school playgrounds in Port Harcourt Metropolis, Rivers State, Nigeria. Journal of Chemical Health & Safety, 24(5), 11–22. https://doi.org/10.1016/j.jchas.2017.01.002

    Article  Google Scholar 

  • Olisah, C., Okoh, O. O., & Okoh, A. I. (2019). Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerging Contaminants, 5, 157–167. https://doi.org/10.1016/j.emcon.2019.05.001

    Article  Google Scholar 

  • Oyekunle, J. A. O., Ogunfowokan, A. O., Torto, N., & Akanni, M. S. (2011). Determination of organochlorine pesticides in the agricultural soil of Oke-Osun farm settlement, Osogbo. Nigeria. Environmental Monitoring & Assessment, 177(1–4), 51–61. https://doi.org/10.1007/s10661-010-1617-y

    Article  CAS  Google Scholar 

  • Pan, H.-W., Lei, H.-J., He, X.-S., Xi, B.-D., Han, Y.-P., & Xu, Q.-G. (2016). Levels and distributions of organochlorine pesticides in the soil–groundwater system of vegetable planting area in Tianjin City. Northern China. Environmental Geochemistry & Health, 39(2), 417–429. https://doi.org/10.1007/s10653-016-9899-9

    Article  CAS  Google Scholar 

  • Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001

    Article  Google Scholar 

  • Persistent Organic Pollutants Review Committee (POPRC) (2020). Draft risk profile. Retrieved February 2, 2022, from https://echa.europa.eu/documents/10162/b65a738e-b50f-64e5-cbb0-f2711d49c25e

  • Qu, C., Albanese, S., Chen, W., Lima, A., Doherty, A. L., Piccolo, A., Arienzo, M., Qi, S., & De Vivo, B. (2016). The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environmental Pollution, 216, 500–511. https://doi.org/10.1016/j.envpol.2016.05.089

    Article  CAS  Google Scholar 

  • Raji, V.R., & Packialakshmi, S. (2022). Assessing the wastewater pollutants retaining for a soil aquifer treatment using batch column experiments. Civil Engineering Journal, 8(7). https://doi.org/10.28991/CEJ-2022-08-07-011.

  • Rajmohan, N., Prathapar, S. A., Jayaprakash, M., & Nagarajan, R. (2014). Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environmental Monitoring & Assessment, 186(9), 5411–5427.

    Article  CAS  Google Scholar 

  • Sabino, H., Silva Júnior, G. C. da, Cesar, R., & Menezes, J. (2020). Heavy metals and major anion content in groundwater of Tamoios coastal district (Rio de Janeiro/Brazil): assessment of suitability for drinking purposes and human health risk. International Journal of Environmental Analytical Chemistry, 102(19), 7357–7379. https://doi.org/10.1080/03067319.2020.1830981

  • Schöpke, R., & Walko, M. (2022). Control of the remediation of anoxic AMD groundwater by sulphate reduction in a subsoil reactor. Journal of Human, Earth, & Future, 3(3). 10.28991/HEF-2022–03–03–02.

  • Sharma, B., Tyagi, S., Singh, R., & Singh, P. (2012). Monitoring of organochlorine pesticides in fresh water samples by gas chromatography and bioremediation approaches. National Academy Science Letters. https://doi.org/10.1007/s40009-012-0070-6

    Article  Google Scholar 

  • Shukla, G., Kumar, A., Bhanti, M., Joseph, P. E., & Taneja, A. (2006). Organochlorine pesticide contamination of ground water in the city of Hyderabad. Environment International, 32(2), 244–247. https://doi.org/10.1016/j.envint.2005.08.027

    Article  CAS  Google Scholar 

  • Škrbić, B.D., Živančev, J., Antić, I., & Buljovčić, M. (2020). Pollution status and health risk caused by heavy elements in the flooded soil and vegetables from typical agricultural region in Vojvodina Province, Serbia. Environmental Science & Pollution Research, 28, 16065–16080.https://doi.org/10.1007/s11356-020-11794-w

  • Sun, H., Qi, Y., Zhang, D., Li, Q. X., & Wang, J. (2016). Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. Environmental Pollution, 209, 177–185. https://doi.org/10.1016/j.envpol.2015.11.040

    Article  CAS  Google Scholar 

  • Sun, H., Chen, Q., Qu, C., Tian, Y., Song, J., Liu, Z., & Guo, J. (2023). Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River. China. Ecotoxicology & Environmental Safety, 253, 114713. https://doi.org/10.1016/j.ecoenv.2023.114713

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Tyagi, N., Upadhyay, M. K., Majumdar, A., Pathak, S. K., Giri, B., Jaiswal, M. K., & Srivastava, S. (2022). An assessment of various potentially toxic elements and associated health risks in agricultural soil along the middle Gangetic basin. India. Chemosphere, 300, 134433. https://doi.org/10.1016/j.chemosphere.2022.134433

    Article  CAS  Google Scholar 

  • Uaboi-Egbenni, P. O., Okolie, P. N., Martins, O., & Teniola, O. (2010). Studies on the occurrence and distribution of heavy metals in sediments in Lagos Lagoon and their effects on benthic microbial population. African Journal of Environmental Science & Technology, 4(6), 343–351.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (UNEP) (2019). All POPs listed in the Stockholm Convention. Retrieved February 7, 2022, from http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx

  • United States Environmental Protection Agency (USEPA) (1996). Method 3510C. Retrieved March 16, 2022, from https://www.epa.gov/sites/default/files/2015-12/documents/3510c.pdf

  • United States Environmental Protection Agency (USEPA) (2011). Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Retrieved February 8, 2022, from http://www.epa.gov/ncea/efh

  • United States Environmental Protection Agency (USEPA) (2022). Learn about lead. Retrieved February 10, 2022, from https://www.epa.gov/lead/learn-aboutlead#:~:text=Lead%20can%20be%20found%20in,lead%2Dbased%20paint%20in%20homes

  • United States Environmental Protection Agency (USEPA) (2023a). Regional Screening Levels (RSLs) - Generic Tables. Retrieved July 28, 2023, from https://semspub.epa.gov/work/HQ/404057.pdf

  • United States Environmental Protection Agency (USEPA) (2023b). National Primary Drinking Water Regulations. Retrieved July 28, 2023, https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic

  • Unyimadu, J.P., Osibanjo, O., & Babayemi, J.O. (2018). Levels of organochlorine pesticides in brackish water fish from Niger River, Nigeria. Journal of Environmental & Public Health, 1–9. https://doi.org/10.1155/2018/2658306

  • Usman, K., Al-Ghouti, M. A., & Abu-Dieyeh, M. H. (2019). The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Science Reports, 9, 5658. https://doi.org/10.1038/s41598-019-42029-9

    Article  CAS  Google Scholar 

  • Wang, X., & Xu, Y. (2014). Soil heavy metal dynamics and risk assessment under long-term land use and cultivation conversion. Environmental Science & Pollution Research, 22(1), 264–274. https://doi.org/10.1007/s11356-014-3340-7

    Article  CAS  Google Scholar 

  • Wang, B., Huang, J., Lu, Y., Arai, S., Iino, F., Morita, M., & Yu, G. (2011). The pollution and ecological risk of endosulfan in soil of Huai’an city. China. Environmental Monitoring and Assessment, 184(12), 7093–7101. https://doi.org/10.1007/s10661-011-2482-z

    Article  CAS  Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2013). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province. Thailand. Environmental Geochemistry & Health, 36(1), 169–182. https://doi.org/10.1007/s10653-013-9537-8

    Article  CAS  Google Scholar 

  • World Health Organisation (WHO) (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.

  • Wu, C., Luo, Y., Gui, T., & Huang, Y. (2014). Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Science of the Total Environment, 470–471, 1047–1055. https://doi.org/10.1016/j.scitotenv.2013.10.056

    Article  CAS  Google Scholar 

  • Xiao, X., Clark, J. M., & Park, Y. (2017). Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and Chemical Toxicology, 105, 456–474. https://doi.org/10.1016/j.fct.2017.05.003

    Article  CAS  Google Scholar 

  • Yan, J., Zhang, H., Niu, J., Luo, B., Wang, H., Tian, M., & Li, X. (2022). Effects of lead and cadmium co-exposure on liver function in residents near a mining and smelting area in north western China. Environmental Geochemistry & Health, 44, 4173–4189. https://doi.org/10.1007/s10653-021-01177-6

    Article  CAS  Google Scholar 

  • Yu, H., Liu, Y., Shu, X., Ma, L., & Pan, Y. (2020). Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China. Chemosphere, 243, 125392. https://doi.org/10.1016/j.chemosphere.2019.125392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R. A. Alani; methodology: R. A. Alani and I. I. Bello; formal analysis and investigation: R. A. Alani and I. I. Bello; writing—original draft preparation: O. E. Akinrinade; writing—review and editing: R. A. Alani, D. O. Nwude, I. I. Bello, C. J. Okolie, and O. E. Akinrinade; resources: R. A. Alani and I. I. Bello; supervision: R. A. Alani.

Corresponding author

Correspondence to Olumide E. Akinrinade.

Ethics declarations

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 74 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alani, R.A., Nwude, D.O., Bello, I. et al. Levels and Health Risks of Heavy Metals and Organochlorine Pesticide Residues in Soil and Drinking Water of Flood-Prone Residential Area of Lagos, Nigeria. Water Air Soil Pollut 234, 783 (2023). https://doi.org/10.1007/s11270-023-06748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06748-0

Keywords

Navigation