Skip to main content
Log in

Ambient Particulate Matter in Valdivia, Chile: Temporal Analysis and Compared Cytotoxicity in Lung Epithelial Cells

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Despite local efforts to replace wood as the main energy source and alleviate the health consequences of their emissions, in most Chilean cities below the 36° S, parallel wood is the main fuel source for home heating and cooking. Valdivia is a city located in the Chilean southern macro-zone where limited research has been carried out to characterize seasonal and daily behavior of atmospheric particulate matter (PM) levels and the potential effects that local PM have over human lung cells. To characterize Valdivia’s ambient PM levels, we assessed daily and hourly PM10 and PM2.5 concentration records in two sampling stations managed by the Chilean Ministry of Environment (VAL-1 and VAL-2). Also, we collected PM2.5 samples from these sites and exposed human lung epithelial cells to assess Valdivia’s PM2.5 effects over lung cell viability.

PM10 and PM2.5 daily levels showed a strong seasonality dependance (cold period [April–September] > warm period [October–March]) and for the years with available data (VAL-1 [2008–2021], VAL-2 [2018–2021]), an average trend of reduction was found (0.5–1.6 μg/m3 by year). VAL-1 PM levels surpassed those measured at VAL-2 (cold period > warm period) and surpassed the levels stablished by national standards and recommended by the World Health Organization (WHO). Hourly PM levels showed a minor peak in the morning (~6–10) and a robust one at night (~18–3).

Weekly PM2.5 ambient samples collected at VAL-1 and VAL-2 were exposed to human lung epithelial cells (A549 and Calu-1) to assess their relative cytotoxicity (cell viability). These samples were compared with standard particulate samples from diesel exhaust (C-DEP), volcanic ashes (MSH), residual oil fly ash (ROFA), and other urban ambient site (Ottawa Dust) through a dose response (ranging 0–100 μg/mL) at 0, 24, 48, and 72 h of exposure. C-DEP and MSH induced a modest reduction in viability (MSH > C-DEP) that was surpassed by VAL-1, VAL-2, and Ottawa Dust which in turn was surpassed by ROFA. Generally, Calu-1 cells and A549 cells were similarly sensitive to ROFA while the A549 cells were more sensitive to ambient samples.

Taken together, these results show that PM concentration differences between sites located in Valdivia city present annual and daily peaks consistent with massive wood usage and that ambient PM2.5 samples induced significant cell viability reductions comparable with standard ambient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Barraza, F., Lambert, F., Jorquera, H., Villalobos, A. M., & Gallardo, L. (2017). Temporal evolution of main ambient PM2.5 sources in Santiago, Chile, from 1998 to 2012. Atmospheric Chemistry and Physics, 17(16), 10093–10107. https://doi.org/10.5194/ACP-17-10093-2017

    Article  CAS  Google Scholar 

  • Blanco, E., Rubilar, F., Quinteros, M. E., Cayupi, K., Ayala, S., Lu, S., Jimenez, R. B., Cárdenas, J. P., Blazquez, C. A., Delgado-Saborit, J. M., Harrison, R. M., & Ruiz-Rudolph, P. (2022). Spatial distribution of particulate matter on winter nights in Temuco, Chile: Studying the impact of residential wood-burning using mobile monitoring. Atmospheric Environment, 286, 119255. https://doi.org/10.1016/J.ATMOSENV.2022.119255

    Article  CAS  Google Scholar 

  • Boman, C., Forsberg, B., & Sandström, T. (2006). Shedding new light on wood smoke: A risk factor for respiratory health. European Respiratory Journal, 27(3), 446–447. https://doi.org/10.1183/09031936.06.00000806

    Article  CAS  Google Scholar 

  • Boso, À., Hofflinger, A. Q., Oltra, C., Alvarez, B., & Garrido, J. (2018). Public support for wood smoke mitigation policies in south-central Chile. Air Quality, Atmosphere and Health, 11(9), 1109–1119. https://doi.org/10.1007/S11869-018-0612-2/TABLES/1

    Article  CAS  Google Scholar 

  • Boso, À., Martínez, A., Somos, M., Álvarez, B., Avedaño, C., & Hofflinger, Á. (2022). No country for old men. Assessing Socio-Spatial Relationships Between Air Quality Perceptions and Exposures in Southern Chile. Applied Spatial Analysis and Policy, 1–18. https://doi.org/10.1007/S12061-022-09446-2/TABLES/2

  • Bravo-Linares, C., Ovando-Fuentealba, L., Mudge, S. M., Cerpa, J., & Loyola-Sepulveda, R. (2012). Source allocation of aliphatic and polycyclic aromatic hydrocarbons in particulate-phase (PM10) in the city of Valdivia, Chile. Polycyclic Aromatic Compounds, 32(3), 390–407. https://doi.org/10.1080/10406638.2012.661829

    Article  CAS  Google Scholar 

  • Cao, D., Tal, T. L., Graves, L. M., Gilmour, I., Linak, W., Reed, W., Bromberg, P. A., & Samet, J. M. (2007). Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(2). https://doi.org/10.1152/AJPLUNG.00204.2006

  • Carlsen, H. K., Hauksdottir, A., Valdimarsdottir, U. A., Gíslason, T., Einarsdottir, G., Runolfsson, H., Briem, H., Finnbjornsdottir, R. G., Gudmundsson, S., Kolbeinsson, T. B., Thorsteinsson, T., & Pétursdóttir, G. (2012). Health effects following the Eyjafjallajökull volcanic eruption: A cohort study. BMJ Open, 2(6), e001851. https://doi.org/10.1136/BMJOPEN-2012-001851

    Article  Google Scholar 

  • Chen, L. C., & Lippmann, M. (2009). Effects of metals within ambient air particulate matter (PM) on human health. Inhalation Toxicology, 21(1), 1–31. https://doi.org/10.1080/08958370802105405

    Article  CAS  Google Scholar 

  • Demokritou, P., Lee, S. J., Ferguson, S. T., & Koutrakis, P. (2004). A compact multistage (cascade) impactor for the characterization of atmospheric aerosols. Journal of Aerosol Science, 35(3), 281–299. https://doi.org/10.1016/J.JAEROSCI.2003.09.003

    Article  CAS  Google Scholar 

  • Di, A., Wu, Y., Chen, M., Nie, D., & Ge, X. (2020). Chemical characterization of seasonal PM2.5 samples and their cytotoxicity in human lung epithelial cells (A549). International Journal of Environmental Research and Public Health, 17(12), 1–13. https://doi.org/10.3390/IJERPH17124599

    Article  Google Scholar 

  • Díaz-Robles, L. A., Saavedra, H., Schiappacasse, L. N., & Cereceda-Balic, F. (2011). The air quality in Chile: Twenty years of challenge. Journal of the Air and Waste Management Association, 3, 28–34.

    Google Scholar 

  • Díaz-Robles, L. A., Fu, J. S., Vergara-Fernández, A., Etcharren, P., Schiappacasse, L. N., Reed, G. D., & Silva, M. P. (2014). Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: A case study of Temuco, Chile. Environment International, 66, 174–181. https://doi.org/10.1016/J.ENVINT.2014.01.017

    Article  Google Scholar 

  • Dix-Cooper, L., Eskenazi, B., Romero, C., Balmes, J., & Smith, K. R. (2012). Neurodevelopmental performance among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon monoxide, a marker for exposure to woodsmoke. Neurotoxicology, 33(2), 246–254. https://doi.org/10.1016/J.NEURO.2011.09.004

    Article  CAS  Google Scholar 

  • Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J., & Costa, D. L. (2010). Soluble transition metals mediate residual oil fly ash induced acute lung injury. Journal of Toxicology and Environmental Health Part A, 50(3), 285–305. https://doi.org/10.1080/009841097160492

    Article  Google Scholar 

  • Duan, S., Zhang, M., Sun, Y., Fang, Z., Wang, H., Li, S., Peng, Y., Li, J., Li, J., Tian, J., Yin, H., Yao, S., & Zhang, L. (2020). Mechanism of PM2.5-induced human bronchial epithelial cell toxicity in central China. Journal of Hazardous Materials, 396, 122747. https://doi.org/10.1016/J.JHAZMAT.2020.122747

    Article  CAS  Google Scholar 

  • Dumax-Vorzet, A. F., Tate, M., Walmsley, R., Elder, R. H., & Povey, A. C. (2015). Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis, 30(5), 621–633. https://doi.org/10.1093/MUTAGE/GEV025

    Article  CAS  Google Scholar 

  • Filipiak, W., Sponring, A., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., Amann, A., & Troppmair, J. (2008). Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell International, 8. https://doi.org/10.1186/1475-2867-8-17

  • Fogh, J., & Trempe, G. (1975). New human tumor cell lines. Human Tumor Cells in Vitro, 115–159. https://doi.org/10.1007/978-1-4757-1647-4_5

  • Ford, B., Val Martin, M., Zelasky, S. E., Fischer, E. V., Anenberg, S. C., Heald, L., & Pierce, J. R. (2018). Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. GeoHealth, 2(8), 229–247. https://doi.org/10.1029/2018GH000144

    Article  CAS  Google Scholar 

  • Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L., & Audus, K. L. (1998). Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Experimental Cell Research, 243(2), 359–366. https://doi.org/10.1006/EXCR.1998.4172

    Article  CAS  Google Scholar 

  • Ghio, A. J., Silbajoris, R., Carson, J. L., & Samet, J. M. (2002). Biologic effects of oil fly ash. Environmental Health Perspectives, 110(Suppl 1), 89. https://doi.org/10.1289/EHP.02110S1189

    Article  Google Scholar 

  • Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., & Parks, W. P. (1973). In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. JNCI: Journal of the National Cancer Institute, 51(5), 1417–1423. https://doi.org/10.1093/JNCI/51.5.1417

    Article  CAS  Google Scholar 

  • Gramsch, E., Oyola, P., Reyes, F., Rojas, F., Henríquez, A., & Kang, C. M. (2021). Trends in particle matter and its elemental composition in Santiago de Chile, 2011–2018. Journal of the Air and Waste Management Association, 71(6), 721–736. https://doi.org/10.1080/10962247.2021.1877211/SUPPL_FILE/UAWM_A_1877211_SM5732.PDF

    Article  CAS  Google Scholar 

  • Grose, E. C., Grady, M. A., Illing, J. W., Daniels, M. J., Selgrade, M. J. K., & Hatch, G. E. (1985). Inhalation studies of Mt. St. Helens volcanic ash in animals: III. Host defense mechanisms. Environmental Research, 37(1), 84–92. https://doi.org/10.1016/0013-9351(85)90051-9

    Article  CAS  Google Scholar 

  • Happo, M. S., Hirvonen, M. R., Halinen, A. I., Jalava, P. I., Pennanen, A. S., Sillanpaa, M., Hillamo, R., & Salonen, R. O. (2008). Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. Inhalation Toxicology, 20(14), 1215–1231. https://doi.org/10.1080/08958370802147282

    Article  CAS  Google Scholar 

  • Hatch, G. E., Boykin, E., Graham, J. A., Lewtas, J., Pott, F., Loud, K., & Mumford, J. L. (1985). Inhalable particles and pulmonary host defense: In vivo and in vitro effects of ambient air and combustion particles. Environmental Research, 36(1), 67–80. https://doi.org/10.1016/0013-9351(85)90008-8

    Article  CAS  Google Scholar 

  • Hofflinger, Á., & Boso, À. (2021). Another one breathes the dust. The relation between severe air pollution episodes and school attendance in southern Chile. Local Environment, 26(2), 252–263. https://doi.org/10.1080/13549839.2021.1886065

    Article  Google Scholar 

  • https://sinca.mma.gob.cl/. (n.d.). https://sinca.mma.gob.cl/. Retrieved June 15, 2021, from https://sinca.mma.gob.cl/

  • Hunneus, N., Urquiza, A., Gayó, E., Osses, M., Arriagada, R., Valdés, M., Álamos, N., Amigo, C., Arrieta, D., Basoa, K., Billi, M., Blanco, G., Boisier, J. P., Calvo, R., Casielles, I., Castro, M., Chahuán, J., Christie, D., Cordero, L., et al. (2020). El aire que respiramos: pasado, presente y futuro - Conbtaminación atmosférica por MP2,5 en el centro y sur de Chile (p. 102). Centro de Ciencia del Clima y la Resilencia (CR)2, (ANID/FONDAP/15110009).

    Google Scholar 

  • Jalava, P. I., Salonen, R. O., Pennanen, A. S., Happo, M. S., Penttinen, P., Hälinen, A. I., Sillanpää, M., Hillamo, R., & Hirvonen, M. R. (2008). Effects of solubility of urban air fine and coarse particles on cytotoxic and inflammatory responses in RAW 264.7 macrophage cell line. Toxicology and Applied Pharmacology, 229(2), 146–160. https://doi.org/10.1016/J.TAAP.2008.01.006

    Article  CAS  Google Scholar 

  • Jaspers, I., Sheridan, P. A., Zhang, W., Brighton, L. E., Chason, K. D., Hua, X., & Tilley, S. L. (2009). Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection. Particle and Fibre Toxicology, 6(1), 1–11. https://doi.org/10.1186/1743-8977-6-22/FIGURES/7

    Article  Google Scholar 

  • Jiang, N., Dreher, K. L., Dye, J. A., Li, Y., Richards, J. H., Martin, L. D., & Adler, K. B. (2000). Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism. Toxicology and Applied Pharmacology, 163(3), 221–230. https://doi.org/10.1006/TAAP.1999.8886

    Article  CAS  Google Scholar 

  • Jorquera, H. (2020). Ambient particulate matter in Santiago, Chile: 1989-2018: A tale of two size fractions. Journal of Environmental Management, 258. https://doi.org/10.1016/J.JENVMAN.2019.110035

  • Jorquera, H., Villalobos, A. M., & Schauer, J. J. (2021). Wood burning pollution in Chile: A tale of two mid-size cities. Atmospheric Pollution Research, 12(4), 50–59. https://doi.org/10.1016/J.APR.2021.02.011

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, J., Kim, W. J., Choi, Y. H., Yang, S. R., & Hong, S. H. (2020). Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. International Journal of Environmental Research and Public Health, 17(22), 1–15. https://doi.org/10.3390/IJERPH17228410

    Article  Google Scholar 

  • Kim, B. E., Kim, J., Goleva, E., Berdyshev, E., Lee, J., Vang, K. A., Lee, U. H., Han, S. Y., Leung, S., Hall, C. F., Kim, N. R., Bronova, I., Lee, E. J., Yang, H. R., Leung, D. Y. M., & Ahn, K. (2021). Particulate matter causes skin barrier dysfunction. JCI Insight, 6(5). https://doi.org/10.1172/JCI.INSIGHT.145185

  • Kleeman, M. J., Schauer, J. J., & Cass, G. R. (1999). Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environmental Science and Technology, 33(20), 3516–3523. https://doi.org/10.1021/ES981277Q/ASSET/IMAGES/LARGE/ES981277QF00010.JPEG

    Article  CAS  Google Scholar 

  • Kodavanti, U. P., Schladweiler, M. C., Ledbetter, A. D., Watkinson, W. P., Campen, M. J., Winsett, D. W., Richards, J. R., Crissman, K. M., Hatch, G. E., & Costa, D. L. (2000). The spontaneously hypertensive rat as a model of human cardiovascular disease: Evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicology and Applied Pharmacology, 164(3), 250–263. https://doi.org/10.1006/TAAP.2000.8899

    Article  CAS  Google Scholar 

  • Kuo, M. L., Jee, S. H., Chou, M. H., & Ueng, T. H. (1998). Involvement of oxidative stress in motorcycle exhaust particle-induced DNA damage and inhibition of intercellular communication. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 413(2), 143–150. https://doi.org/10.1016/S1383-5718(98)00020-5

    Article  CAS  Google Scholar 

  • Kwon, H. S., Ryu, M. H., & Carlsten, C. (2020). Ultrafine particles: Unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52(3), 318–328. https://doi.org/10.1038/s12276-020-0405-1

    Article  CAS  Google Scholar 

  • Li, N., Wang, M., Oberley, T. D., Sempf, J. M., & Nel, A. E. (2002). Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. The Journal of Immunology, 169(8), 4531–4541. https://doi.org/10.4049/JIMMUNOL.169.8.4531

    Article  CAS  Google Scholar 

  • Lippmann, M. (2010). Targeting the components most responsible for airborne particulate matter health risks. Journal of Exposure Science & Environmental Epidemiology, 20(2), 117–118. https://doi.org/10.1038/jes.2010.1

    Article  Google Scholar 

  • Marchetti, S., Longhin, E., Bengalli, R., Avino, P., Stabile, L., Buonanno, G., Colombo, A., Camatini, M., & Mantecca, P. (2019). In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Science of The Total Environment, 649, 1422–1433. https://doi.org/10.1016/J.SCITOTENV.2018.08.249

    Article  CAS  Google Scholar 

  • Mardones, C., & Cornejo, N. (2020). Ex - post evaluation of a program to reduce critical episodes due to air pollution in southern Chile. Environmental Impact Assessment Review, 80, 106334. https://doi.org/10.1016/J.EIAR.2019.106334

    Article  Google Scholar 

  • Molina, C., ToroA, R., MoralesS, R. G. E., Manzano, C., & Leiva-Guzmán, M. A. (2017). Particulate matter in urban areas of south-central Chile exceeds air quality standards. Air Quality, Atmosphere and Health, 10(5), 653–667. https://doi.org/10.1007/S11869-017-0459-Y/TABLES/5

    Article  CAS  Google Scholar 

  • Monick, M. M., Baltrusaitis, J., Powers, L. S., Borcherding, J. A., Caraballo, J. C., Mudunkotuwa, I., Peate, D. W., Walters, K., Thompson, J. M., Grassian, V. H., Gudmundsson, G., & Comellas, A. P. (2013). Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro. Environmental Health Perspectives, 121(6), 691–698. https://doi.org/10.1289/EHP.1206004

    Article  Google Scholar 

  • Naeher, L. P., Brauer, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects : A review. Inhalation Toxicology, 19(1), 67–106. https://doi.org/10.1080/08958370600985875

    Article  CAS  Google Scholar 

  • Nakamura, A., Nakatani, N., Maruyama, F., Fujiyoshi, S., Márquez-Reyes, R., Fernández, R., & Noda, J. (2022). Characteristics of PM2.5 pollution in Osorno, Chile: Ion chromatography and meteorological data analyses. Atmosphere, 13(2), 168. https://doi.org/10.3390/ATMOS13020168

    Article  CAS  Google Scholar 

  • Niu, X., Ho, K. F., Chuang, H. C., Sun, J., Huang, Y., Hu, T., Xu, H., Duan, J., Lui, K. H., & Cao, J. (2019). Comparison of cytotoxicity induced by PM2.5-bound polycyclic aromatic compounds from different environments in Xi’an, China. Atmospheric Environment, 216. https://doi.org/10.1016/J.ATMOSENV.2019.116929

  • Niu, B. Y., Li, W. K., Li, J. S., Hong, Q. H., Khodahemmati, S., Gao, J. F., & Zhou, Z. X. (2020). Effects of DNA damage and oxidative stress in human bronchial epithelial cells exposed to PM2.5 from Beijing, China, in winter. International Journal of Environmental Research and Public Health, 17(13), 1–14. https://doi.org/10.3390/IJERPH17134874

    Article  Google Scholar 

  • Perez, P., Menares, C., & Ramírez, C. (2020). PM2.5 forecasting in Coyhaique, the most polluted city in the Americas. Urban Climate, 32, 100608. https://doi.org/10.1016/J.UCLIM.2020.100608

    Article  Google Scholar 

  • Reyes, R., Nelson, H., Navarro, F., & Retes, C. (2015). The firewood dilemma: Human health in a broader context of well-being in Chile. Energy for Sustainable Development, 28, 75–87. https://doi.org/10.1016/J.ESD.2015.07.005

    Article  Google Scholar 

  • Reyes, R., Schueftan, A., Ruiz, C., & González, A. D. (2019). Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses? Energy Policy, 124, 301–311. https://doi.org/10.1016/J.ENPOL.2018.10.022

    Article  CAS  Google Scholar 

  • Reyes, F., Ahumada, S., Rojas, F., Oyola, P., Vásquez, Y., Aguilera, C., Henriquez, A., Gramsch, E., Kang, C. M., Saarikoski, S., Teinilä, K., Aurela, M., & Timonen, H. (2021). Impact of biomass burning on air quality in Temuco City. Chile. Aerosol and Air Quality Research, 21(11), 210110. https://doi.org/10.4209/AAQR.210110

    Article  CAS  Google Scholar 

  • Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., Lynch, I., Duschl, A., Ichihara, G., Ichihara, S., Kobayashi, T., Hisanaga, N., Umezawa, M., Cheng, T. J., Handy, R., Gulumian, M., Tinkle, S., & Cassee, F. (2019). Particle toxicology and health - Where are we? Particle and Fibre Toxicology, 16(1), 1–33. https://doi.org/10.1186/S12989-019-0302-8/FIGURES/7

    Article  Google Scholar 

  • Sanhueza, H., Vargas, C., & Mellado, G. (2006). Impact of air pollution by fine particulate matter (PM10) on daily mortality in Temuco, Chile. Revista Medica de Chile, 134(6), 754–761. https://doi.org/10.4067/S0034-98872006000600012

    Article  Google Scholar 

  • Sanhueza, P. A., Torreblanca, M. A., Diaz-Robles, L. A., Schiappacasse, L. N., Silva, M. P., & Astete, T. D. (2009). Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: A wood-smoke-polluted urban area. Journal of the Air & Waste Management Association (1995), 59(12), 1481–1488. https://doi.org/10.3155/1047-3289.59.12.1481

    Article  CAS  Google Scholar 

  • Sax, S. N., Koutrakis, P., Ruiz Rudolph, P. A., Cereceda-Balic, F., Gramsch, E., & Oyola, P. (2007). Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003. Journal of the Air & Waste Management Association (1995), 57(7), 845–855. https://doi.org/10.3155/1047-3289.57.7.845

    Article  CAS  Google Scholar 

  • Schueftan, A., & González, A. D. (2015). Proposals to enhance thermal efficiency programs and air pollution control in south-central Chile. Energy Policy, 79, 48–57. https://doi.org/10.1016/J.ENPOL.2015.01.008

    Article  CAS  Google Scholar 

  • Schueftan, A., Sommerhoff, J., & González, A. D. (2016). Firewood demand and energy policy in south-central Chile. Energy for Sustainable Development, 33, 26–35. https://doi.org/10.1016/J.ESD.2016.04.004

    Article  Google Scholar 

  • Shim, I., Kim, W., Kim, H., Lim, Y. M., Shin, H., Park, K. S., Yu, S. M., Kim, Y. H., Sung, H. K., Eom, I. C., Kim, P., & Yu, S. D. (2021). Comparative cytotoxicity study of PM2.5 and TSP collected from urban areas. Toxics, 9(7). https://doi.org/10.3390/TOXICS9070167

  • Solís, R., Toro, A., & R., Gomez, L., Vélez-Pereira, A. M., López, M., Fleming, Z. L., Fierro, N., & Leiva G., M. (2022). Long-term airborne particle pollution assessment in the city of Coyhaique, Patagonia. Chile. Urban Climate, 43, 101144. https://doi.org/10.1016/J.UCLIM.2022.101144

    Article  Google Scholar 

  • Tal, T. L., Bromberg, P. A., Kim, Y., & Samet, J. M. (2008). Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition. Toxicology and Applied Pharmacology, 233(3), 382–388. https://doi.org/10.1016/J.TAAP.2008.09.013

    Article  CAS  Google Scholar 

  • Thomson, E. M., Breznan, D., Karthikeyan, S., MacKinnon-Roy, C., Vuong, N. Q., Dabek-Zlotorzynska, E., Celo, V., Charland, J. P., Kumarathasan, P., Brook, J. R., & Vincent, R. (2016). Contrasting biological potency of particulate matter collected at sites impacted by distinct industrial sources. Particle and Fibre Toxicology, 13(1). https://doi.org/10.1186/S12989-016-0176-Y

  • Troncoso, R., De Grange, L., & Cifuentes, L. A. (2012). Effects of environmental alerts and pre-emergencies on pollutant concentrations in Santiago, Chile. Atmospheric Environment, 61, 550–557. https://doi.org/10.1016/J.ATMOSENV.2012.07.077

    Article  CAS  Google Scholar 

  • Veronesi, B., De Haar, C., Lee, L., & Oortgiesen, M. (2002a). The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 178(3), 144–154. https://doi.org/10.1006/taap.2001.9341

    Article  CAS  Google Scholar 

  • Veronesi, B., De Haar, C., Roy, J., & Oortgiesen, M. (2002b). Particulate matter inflammation and receptor sensitivity are target cell specific. Inhalation Toxicology, 14(2), 159–183. https://doi.org/10.1080/089583701753403971

    Article  CAS  Google Scholar 

  • Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2017). Wood burning pollution in southern Chile: PM2.5 source apportionment using CMB and molecular markers. Environmental Pollution, 225, 514–523. https://doi.org/10.1016/j.envpol.2017.02.069

    Article  CAS  Google Scholar 

  • Vincent, R., Goegan, P., Johnson, G., Brook, J. R., Kumarathasan, P., Bouthillier, L., & Burnett, R. T. (1997). Regulation of promoter-CAT stress genes in HepG2 cells by suspensions of particles from ambient air. Fundamental and Applied Toxicology, 39(1), 18–32. https://doi.org/10.1006/faat.1997.2336

    Article  CAS  Google Scholar 

  • Vuong, N. Q., Breznan, D., Goegan, P., O’Brien, J. S., Williams, A., Karthikeyan, S., Kumarathasan, P., & Vincent, R. (2017). In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Particle and Fibre Toxicology, 14(1), 1–19. https://doi.org/10.1186/S12989-017-0220-6/FIGURES/7

    Article  Google Scholar 

  • Wang, T., Rovira, J., Sierra, J., Blanco, J., Chen, S. J., Mai, B. X., Schuhmacher, M., & Domingo, J. L. (2021). Characterization of airborne particles and cytotoxicity to a human lung cancer cell line in Guangzhou. China. Environmental Research, 196, 110953. https://doi.org/10.1016/J.ENVRES.2021.110953

    Article  CAS  Google Scholar 

  • WHO. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.

    Google Scholar 

  • Wu, Y., Wang, M., Luo, S., Gu, Y., Nie, D., Xu, Z., Wu, Y., Chen, M., & Ge, X. (2021). Comparative toxic effects of manufactured nanoparticles and atmospheric particulate matter in human lung epithelial cells. International Journal of Environmental Research and Public Health, 18(1), 1–13. https://doi.org/10.3390/IJERPH18010022

    Article  Google Scholar 

  • Yáñez, M. A., Baettig, R., Cornejo, J., Zamudio, F., Guajardo, J., & Fica, R. (2017). Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter. Atmospheric Environment, 161, 221–234. https://doi.org/10.1016/J.ATMOSENV.2017.05.007

    Article  Google Scholar 

  • Zhang, Y., Darland, D., He, Y., Yang, L., Dong, X., & Chang, Y. (2018). Reduction of PM2.5 toxicity on human alveolar epithelial cells A549 by tea polyphenols. Journal of Food Biochemistry, 42(3), e12496. https://doi.org/10.1111/JFBC.12496

    Article  Google Scholar 

  • Zhou, T., Zhong, Y., Liao, J., Wang, G., Li, X., Qian, X., Xiang, P., Chen, X., Xu, Z., Zhang, F., Wang, X., Wang, S., Li, X., Yu, C., Zhang, Y., Xia, G., & Dai, L. (2019). A prospective study of salvational intervention with ICS/LABA for reducing chronic obstructive pulmonary disease exacerbation under severe air pollution (SIRCAP) in Beijing: Protocol of a multi-center randomized controlled trial. BMC Pulmonary Medicine, 19(1). https://doi.org/10.1186/s12890-018-0771-9

Download references

Acknowledgements

The authors thank Dr. Urmila P. Kodavanti from USA and EPA for her critical review of the manuscript.

Funding

This work was supported by the Agencia Nacional de Investigación y Desarrollo (ANID, FONDECYT Postdoctoral project # 3210494, Chile) and FONDECYT #1201378.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres R. Henriquez or Rodrigo López-Muñoz.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriquez, A.R., Reyes, F., Buelvas, N. et al. Ambient Particulate Matter in Valdivia, Chile: Temporal Analysis and Compared Cytotoxicity in Lung Epithelial Cells. Water Air Soil Pollut 234, 611 (2023). https://doi.org/10.1007/s11270-023-06622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06622-z

Keywords

Navigation