Skip to main content
Log in

Pyrolysis characteristics of biochar composite loaded with Fe(III) and its activation mechanism to persulfate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Although metals (Fe(III)) loaded with BC (MBC) exhibited good catalytic reactivity, the structural evolution process of MBC with pyrolysis and the evaluation of electron transfer capacity of MBC during persulfate oxidation were typically overlooked. Results of this study indicated that increasing pyrolysis temperature could promote the carbonization of biomass and lead to the formation of a well-developed microporous structure. Large numbers of functional groups and Fe species were formed by pyrolysis, but the content varies greatly under different pyrolysis temperatures. MBC prepared at pyrolysis temperature of 300 °C (MBC300) exhibited an excellent activation capacity, and the removal efficiency of 2,4-dinitrotoluene reached 83.7% within 5 h of the reaction by adding in 2.5 mmol/L persulfate and 0.5 g/L MBC300. Sulfate radical (SO4·-) and hydroxyl radical (·OH) participated in the reaction, but ·OH was mainly responsible for the degradation of 2,4-dinitrotoluene. Multiple characterization methods confirmed that Fe(III) maghemite and Fe 2p1/2 in MBCs mainly promoted the activation of persulfate, and oxygen-containing functional groups as an electronic shuttle accelerated the electron transfer in the persulfate/MBC system. Compared to that of biochar, the electron donating and electron accepting capacity of MBC were increased by an order of magnitude. This result is of significance for the preparation of green activation material used in the remediation of organically polluted groundwater with persulfate oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Bilski, P., Reszka, K., Bilska, M., & Chignell, C. F. (1996). Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. J. Am. Chem. Soc., 118(6), 1330–1338.

    Article  CAS  Google Scholar 

  • Falciglia, P. P., Roccaro, P., Bonanno, L., De, G. G., Vagliasindi, F. G. A., & Romano, S. (2018). A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications. Renew. Sust. Energ. Rev., 95, 147–170.

    Article  CAS  Google Scholar 

  • Fang, J. Y., & Shang, C. (2012). Bromate formation from bromide oxidation by the UV/persulfate process. Environ. Sci. Technol., 46(16), 8976–8983.

    Article  CAS  Google Scholar 

  • He, X. S., Xi, B. D., Cui, D. Y., Liu, Y., Tan, W. B., Pan, H. W., & Li, D. (2014). Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting. J. Hazard. Mater., 268, 256–263.

    Article  CAS  Google Scholar 

  • Hu, X. H., Xu, J. Y., Wu, M. S., Xing, J. X., Bi, W. S., Wang, K., Ma, J. F., & Liu, X. (2017). Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties. J. Anal. Appl. Pyrol., 127, 196–202.

    Article  CAS  Google Scholar 

  • Huong, P. T., Jitae, K., Tahtamouni, T. A., Minh Tri, N. L., Kim, H. H., Hwa Cho, K. H., & Lee, C. (2020). Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater. J. Water Process Eng., 33, 101037.

    Article  Google Scholar 

  • Jiang, Q., Jiang, S. M., Li, H., Zhang, R., Jiang, Z., & Zhang, Y. (2021). A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem. Eng. J., 431(1), 133937.

    Google Scholar 

  • Karunanayake, A. G., Navarathna, C. M., Gunatilake, S. R., Crowley, M., Anderson, R., Mohan, D., Perez, F., Pittman, C. U., & Mlsna, T. (2019). Fe3O4 nanoparticles dispersed on douglas fir biochar for phosphate sorption. ACS Appl. Nano Mater., 2, 3467–3479.

    Article  CAS  Google Scholar 

  • Klüepfel, L., Keiluweit, M., Kleber, M., & Sander, M. (2014). Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 48(10), 5601–5611.

    Article  Google Scholar 

  • Lau, T. K., Chu, W., & Graham, N. J. D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol., 41(2), 613–619.

    Article  CAS  Google Scholar 

  • Luo, J. Y., Yi, Y. Q., Ying, G. G., Fang, Z. Q., & Zhang, Y. F. (2021). Activation of persulfate for highly efficient degradation of metronidazole using Fe(II)-rich potassium doped magnetic biochar. Sci. Total Environ., 891, 152089.

    Google Scholar 

  • Li, H., Mahyoub, S. A. A., Liao, W. J., Xia, S. Q., Zhao, H. C., Guo, M. Y., & Ma, P. S. (2017). Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technol., 223, 20–26.

    Article  CAS  Google Scholar 

  • Li, H. H., Zhu, F., & He, S. Y. (2019a). The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron/persulfate. Ecotox. Environ. Safe., 183, 109540.

    Article  CAS  Google Scholar 

  • Li, X. D., Shen, J. L., Sun, Z. Q., Liu, Y. Q., Zhang, W. W., Ma, F. J., & Gu, Q. B. (2021). Degradation of 2,4-dinitrotoluene using ferrous activated persulfate: Kinetics, mechanisms, and effects of natural water matrices. J. Environ. Chem. Eng., 9(5), 106048.

    Article  CAS  Google Scholar 

  • Li, Z., Sun, Y. Q., Yang, Y., Han, Y. T., Wang, T. S., Chen, J. W., & Tsang, D. C. W. (2019b). Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J. Hazard. Mater., 383, 121240.

    Article  Google Scholar 

  • Liang, C. J., Lin, Y. T., & Shih, W. H. (2009). Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Ind. Eng. Chem. Res., 48(18), 8373–8380.

    Article  CAS  Google Scholar 

  • Liu, B. H., Guo, W. Q., Wang, H. Z., Si, Q. S., Zhao, Q., Luo, H. C., & Ren, N. Q. (2020). B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation. Chem. Eng. J., 396, 125119.

    Article  CAS  Google Scholar 

  • Liu, T. T., Yao, B., Luo, Z. R., Li, W., Li, C. W., Ye, Z. Y., Gong, X. X., Yang, J., & Zhou, Y. Y. (2022). Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. Sci. Total Environ., 359(5), 396–407.

    Google Scholar 

  • Magioglou, E., Frontistis, Z., Vakros, J., Manariotis, I. D., & Mantzavinos, D. (2019). Activation of persulfate by biochars from valorized olive stones for the degradation of sulfamethoxazole. Catalysts, 419(9), 1–14.

    Google Scholar 

  • Mer, K., Sajjadi, B., Egiebor, N. O., Chen, W. Y., Mattern, D. L., & Tao, W. (2021). Enhanced degradation of organic contaminants using catalytic activity of carbonaceous structures: A strategy for the reuse of exhausted sorbents. J. Environ. Sci., 99, 267–273.

    Article  CAS  Google Scholar 

  • Nguyen, T. B., Doong, R. A., Huang, C. P., Chen, C. W., & Dong, C. D. (2019). Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB). Sci. Total Environ., 675, 531–541.

    Article  CAS  Google Scholar 

  • Ouyang, D., Yan, J. C., Qian, L. B., Chen, Y., Han, L., Su, A. Q., Zhang, W. Y., Ni, H., & Chen, M. F. (2017). Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere, 184, 609–617.

    Article  CAS  Google Scholar 

  • Ouyang, D., Chen, Y., Yan, J. C., Qian, L. B., Han, L., & Chen, M. F. (2019). Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures. Chem. Eng. J., 370, 614–624.

    Article  CAS  Google Scholar 

  • Pera-Titus, M., Garcia-Molina, V., Banos, M. A., Gimenez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B-Environ., 47(2), 219–256.

    Article  CAS  Google Scholar 

  • Rong, X., Xie, M., Kong, L. S., Natarajan, V., Ma, L., & Zhan, J. H. (2019). The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation. Chem. Eng. J., 372, 294–303.

    Article  CAS  Google Scholar 

  • Ruan, X. X., Sun, Y. Q., Du, W. M., Tang, Y. Y., Liu, Q., Zhang, Z. Y., Doherty, W., Frost, R. L., Qian, G. R., & Tsang, D. C. W. (2019). Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technol., 281, 457–468.

    Article  CAS  Google Scholar 

  • Saquing, J. M., Yu, Y. H., & Chiu, P. C. (2016). Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environ. Sci. Tech. Let., 3(2), 62–66.

    Article  CAS  Google Scholar 

  • Sathishkumar, K., Li, Y., & Sangangdo, E. (2020). Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer. Chem. Eng. J., 395, 125077.

    Article  CAS  Google Scholar 

  • Shang, W. T., Dong, Z. J., Li, M., Song, X. L., Zhang, M., Jiang, C. C., & Sun, F. Y. (2019). Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation. Chem. Eng. J., 361, 1333–1344.

    Article  CAS  Google Scholar 

  • Sun, Y. Q., Yu, I. K. M., Tsang, D. C. W., Cao, X. D., Lin, D. H., Wang, L. L., Graham, N. J. D., Alessi, D. S., Komárek, M., Ok, Y. S., Feng, Y. J., & Feng, X. D. (2019). Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ. Int., 124, 521–532.

    Article  CAS  Google Scholar 

  • Song, Q. Y., Feng, Y. P., Liu, G. G., & Lv, W. Y. (2019). Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chem. Eng. J., 361, 929–936.

    Article  CAS  Google Scholar 

  • Tian, S. Q., Wang, L., Liu, Y. L., Yang, T., Huang, Z. S., Wang, X. S., He, H. Y., Jiang, J., & Ma, J. (2019). Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in situ activation of biochar. Environ. Sci. Technol., 53, 5282–5291.

    Article  CAS  Google Scholar 

  • Uaman, A. R. A., Abduljabbar, A., Vithanage, M., & OK, Y.S., Ahmad, M., Elfaki, J., Abdulazzem, S.S., Al-Wabel, M.I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrol., 115, 392–400.

    Article  Google Scholar 

  • Wang, R. Z., Huang, D. L., Liu, Y. G., Zhang, C., Lai, C., Wang, X., Zeng, G. M., Gong, X. M., Duan, A., Zhang, Q., & Xu, P. (2019). Recent advances in biochar-based catalysts: Properties, applications and mechanisms for pollution remediation. Chem. Eng. J., 371, 380–403.

    Article  CAS  Google Scholar 

  • Wu, S. H., He, H. J., Inthapanya, X., Yang, C. P., Lu, L., Zeng, G. M., & Han, Z. F. (2017). Role of biochar on composting of organic wastes and remediation of contaminated soils-A review. Environ. Sci. Pollut. Res., 24, 16560–16577.

    Article  CAS  Google Scholar 

  • Wang, X. H., Zhang, P., Wang, C. P., Jia, H. Z., Shang, X. F., Tang, J. C., & Sun, H. W. (2022). Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: Role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms. J. Hazard. Mater., 424, 127225.

    Article  CAS  Google Scholar 

  • Xu, L., Fu, B. R., Sun, Y., Jin, P. K., Bai, X., Jin, X., Shi, X., Wang, Y., & Nie, S. T. (2020). Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application. Chem. Eng. J., 400, 125870.

    Article  CAS  Google Scholar 

  • Xu, X. Y., Huang, H., Zhang, Y., Xu, Z. B., & Cao, X. D. (2019). Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environ. Pollut., 244, 423–430.

    Article  CAS  Google Scholar 

  • Yan, N., Liu, F., Xue, Q., Brusseau, M. L., Liu, Y. L., & Wang, J. J. (2015). Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products. Chem. Eng. J., 274, 61–68.

    Article  CAS  Google Scholar 

  • Yuan, J., Xu, R., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol., 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Yang, L., Chen, Y., Ouyang, D., Yan, J. C., Qian, L. B., Han, L., Chen, M. F., Li, J., & Gu, M. Y. (2020). Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system. Chem. Eng. J., 400, 125811.

    Article  CAS  Google Scholar 

  • Yi, Y. Q., Tu, G. Q., Zhao, D. Y., Tsang, P. E., & Fang, Z. Q. (2019). Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chem. Eng. J., 360, 212–220.

    Article  CAS  Google Scholar 

  • Yi, Y. Q., Tu, G. Q., Tsang, P. E., & Fang, Z. Q. (2020). Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar. Chem. Eng. J., 380, 122518.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Liu, H. L., Xin, Y. J., Shen, Y. P., Wang, J., Cai, C., & Wang, M. M. (2019). Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation. Chem. Eng. J., 358, 1446–1453.

    Article  CAS  Google Scholar 

  • Zhou, X. R., Zeng, Z. T., Zeng, G. M., Lai, C., Xiao, R., Liu, S. Y., Huang, D. L., Qin, L., Liu, X. G., Li, B. S., Yi, H., Fu, Y. K., Li, L., & Wang, Z. H. (2020). Insight into the mechanism of persulfate activated by bone char: Unraveling the role of functional structure of biochar. Chem. Eng. J., 401, 126127.

    Article  CAS  Google Scholar 

  • Zhu, J., Song, Y. N., Wang, L. W., Zhang, Z. R., Gao, J., Tsang, D. C. W., Ok, Y. S., & Hou, D. Y. (2021). Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chem. Eng. J., 429, 132292.

    Article  Google Scholar 

  • Zhu, S. S., Huang, X. C., Ma, F., Wang, L., Duan, X. G., & Wang, S. B. (2018). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol., 52(15), 8649–8658.

    Article  CAS  Google Scholar 

  • Zhu, S., Li, X., Kang, J., Duan, X., & Wang, S. (2019a). Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol., 53(1), 307–315.

    Article  CAS  Google Scholar 

  • Zhu, K. M., Wang, X. S., Geng, M. Z., Chen, D., Lin, H., & Zhang, H. (2019b). Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chem. Eng. J., 374, 1253–1263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (2022YSKY-30) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fujun Ma or Qingbao Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 120 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cao, Y., Sun, Z. et al. Pyrolysis characteristics of biochar composite loaded with Fe(III) and its activation mechanism to persulfate. Water Air Soil Pollut 234, 604 (2023). https://doi.org/10.1007/s11270-023-06611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06611-2

Keywords

Navigation