Skip to main content
Log in

Efficient Remediation of an Actual Cyanide-Contaminated Soil by Persulfate Oxidation: Tube- and Column-Scale Studies and Restoration Quality Evaluation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The removal of cyanide complexes in an actually contaminated soil (pollution level 930 mg CN/kg soil) by sulfate radical (SO4•–)-based advanced oxidation processes (SR-AOPs) was investigated in tube and column tests. Experimental parameters including soil/water ratio, sodium persulfate (SP) dosage, Fe2+/tartaric acid/SP mole ratio, and reaction time were optimized in the tube test. The column-scale experiment shows that the addition of SP solution at the bottom and middle of the column was more effective than injecting one slug from the column bottom. Experimental results show that more than 98% of total cyanide (TCN) was removed in the soil within 4 h, and the quality of the remediated soil can meet the requirement of construction land. SP dosage of the column experiments is 23.6% higher than that of the tube tests, but no soil-water separation was needed for the column treatment. The soil corrosivity to building materials was only slightly modified by the oxidation treatment, and the numbers of indigenous microbes may quickly restore after nutrient stimulation. Overall, the results underline the significance and the potential of iron chelate-activated SR-AOPs in the remediation of highly contaminated soils by the column oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author Liu upon reasonable request.

References

  • Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418–1433.

    Article  CAS  Google Scholar 

  • Bargrizan, S., Smernik, R. J., Fitzpatrick, R. W., & Mosley, L. M. (2018). The application of a spectrophotometric method to determine pH in acidic (pH< 5) soils. Talanta, 186, 421–426.

    Article  CAS  Google Scholar 

  • Barnes, D. E., Wright, P. J., Graham, S. M., & Jones-Watson, E. A. (2000). Techniques for the determination of cyanide in a process environment: A review. Geostandards Newsletter, 24(2), 183–195.

    Article  CAS  Google Scholar 

  • Cao, Y., Yuan, X., Zhao, Y., & Wang, H. (2022). In-situ soil remediation via heterogeneous iron-based catalysts activated persulfate process: A review. Chemical Engineering Journal, 431, 133833.

    Article  CAS  Google Scholar 

  • Chen, F., Luo, Z., Liu, G., Yang, Y., Zhang, S., & Ma, J. (2017). Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing. Journal of Environmental Management, 204, 170–178.

    Article  CAS  Google Scholar 

  • Chen, M., Li, S., Jin, C., Shao, M., Huang, Z., & Xie, X. (2021). Removal of metal-cyanide complexes and recovery of Pt (II) and Pd (II) from wastewater using an alkali–tolerant metal-organic resin. Journal of Hazardous Materials, 406, 124315.

    Article  CAS  Google Scholar 

  • Christison, T. T., & Rohrer, J. S. (2007). Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. Journal of Chromatography A, 1155(1), 31–39.

    Article  CAS  Google Scholar 

  • Chu, J. H., Kang, J. K., Park, S. J., & Lee, C. G. (2020). Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment. Environmental Science and Pollution Research, 27(33), 41688–41701.

    Article  CAS  Google Scholar 

  • Deng, J., Xu, M., Feng, S., Qiu, C., Li, X., & Li, J. (2019). Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: Performance, mechanism and degradation pathway. Science of the Total Environment, 658, 343–356.

    Article  CAS  Google Scholar 

  • Dong, X., Feng, R., Jiang, Y., Cai, T., & Jiang, C. (2022). The impacts of temperature, soil-water ratio, and background multiplied inorganic anions on the degradation of organophosphorus flame retardants in soil by peroxydisulfate-based advanced oxidation processes. Process Safety and Environmental Protection, 168, 422–433.

    Article  CAS  Google Scholar 

  • Dong, Z., Zhang, Q., Chen, B. Y., & Hong, J. (2019). Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency. Chemical Engineering Journal, 357, 337–347.

    Article  CAS  Google Scholar 

  • Fazli, A., Khataee, A., Brigante, M., & Mailhot, G. (2021). Cubic cobalt and zinc co-doped magnetite nanoparticles for persulfate and hydrogen peroxide activation towards the effective photodegradation of Sulfalene. Chemical Engineering Journal, 404, 126391.

    Article  CAS  Google Scholar 

  • Feng, J., Yu, Q., He, A., & Sheng, G. D. (2021). Accelerating Cu and Cd removal in soil flushing assisted by regulating permeability with electrolytes. Chemosphere, 281, 130883.

    Article  CAS  Google Scholar 

  • Fu, C., Yi, X., Liu, Y., & Zhou, H. (2020). Cu2+ activated persulfate for sulfamethazine degradation. Chemosphere, 257, 127294.

    Article  CAS  Google Scholar 

  • Ghanbari, F., Moradi, M., & Gohari, F. (2016). Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. Journal of Water Process Engineering, 9, 22–28.

    Article  Google Scholar 

  • Giannakis, S., Lin, K. Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chemical Engineering Journal, 406, 127083.

    Article  CAS  Google Scholar 

  • Ibargüen-López, H., López-Balanta, B., Betancourt-Buitrago, L., Serna-Galvis, E. A., Torres-Palma, R. A., Machuca-Martínez, F., & Castilla-Acevedo, S. F. (2021). Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH. Journal of Environmental Chemical Engineering, 9(5), 106233.

    Article  Google Scholar 

  • Li, D., Zhao, Y., Wang, L., Wei, S., & Huang, S. (2021). Remediation of phenanthrene contaminated soil through persulfate oxidation coupled microbial fortification. Journal of Environmental Chemical Engineering, 9(5), 106098.

    Article  CAS  Google Scholar 

  • Liang, C., Huang, C. F., Mohanty, N., & Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73, 1540–1543.

    Article  CAS  Google Scholar 

  • Liu, D., Li, M., Li, X., Ren, F., Sun, P., & Zhou, L. (2020). Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chemical Engineering Journal, 387, 124008.

    Article  CAS  Google Scholar 

  • Liu, F., Zhao, J., Ma, Y., Liu, Z., Xu, Y., & Zhang, H. (2022). Removal of diesel from soil washing effluent by electro-enhanced Fe2+ activated persulfate process. Journal of Electroanalytical Chemistry, 906, 115995.

    Article  CAS  Google Scholar 

  • Liu, Z., Gao, Z., & Wu, Q. (2021). Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chemical Engineering Journal, 423, 130283.

    Article  CAS  Google Scholar 

  • Lu, M., & Zhang, Z. Z. (2014). Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant and Soil, 382, 89–102.

    Article  CAS  Google Scholar 

  • Satizabal-Gómez, V., Collazos-Botero, M. A., Serna-Galvis, E. A., Torres-Palma, R. A., Bravo-Suárez, J. J., Machuca-Martínez, F., & Castilla-Acevedo, S. F. (2021). Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater. Minerals Engineering, 170, 107031.

    Article  Google Scholar 

  • Wei, Y., Chen, S., Ren, T., Chen, L., Liu, Y., Gao, J., & Li, Y. (2022). Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate. Chemosphere, 292, 133463.

    Article  CAS  Google Scholar 

  • Wei, Y., Du, L., Deng, X., Liu, X., Mei, X., & Shi, D. (2018). Alkaline-assisted leaching of iron-cyanide complex from contaminated soils. Chemical Engineering Journal, 354, 53–61.

    Article  CAS  Google Scholar 

  • Wei, Y., Wang, F., Liu, X., Fu, P., Yao, R., Ren, T., Shi, D., & Li, Y. (2020). Thermal remediation of cyanide-contaminated soils: Process optimization and mechanistic study. Chemosphere, 239, 124707.

    Article  CAS  Google Scholar 

  • Yan, J., Chen, Y., Qian, L., Gao, W., Ouyang, D., & Chen, M. (2017). Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. Journal of Hazardous Materials, 338, 372–380.

    Article  CAS  Google Scholar 

  • Yang, T., Cao, J., Cao, X., Dong, Z., Yang, Z., Chen, Z., & Qiu, S. (2020). Experimental study on cyanide-contaminated soil (China) treatment by leaching and decomposition. Environmental Science and Pollution Research, 27(8), 8176–8187.

    Article  CAS  Google Scholar 

  • Zhang, T., Liu, Y., Zhong, S., & Zhang, L. (2020). AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere, 246, 125726.

    Article  CAS  Google Scholar 

  • Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., & Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal, 372, 836–851.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52260005), the Natural Science Foundation of Jiangxi Province (No. 20212BAB204041), the Key Research Development Program of Jiangxi Province (20203BBGL73230), and the Science & Technology Plan Projects of Education Department of Jiangxi Province (No. GJJ200617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanmeng Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, M. Efficient Remediation of an Actual Cyanide-Contaminated Soil by Persulfate Oxidation: Tube- and Column-Scale Studies and Restoration Quality Evaluation. Water Air Soil Pollut 234, 590 (2023). https://doi.org/10.1007/s11270-023-06608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06608-x

Keywords

Navigation