Skip to main content
Log in

Adsorption of tetracycline using the α-FeOOH-loaded rubber-seed-shell-derived activated carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tetracycline is a common pharmaceutical product that is used to treat infections caused by bacteria. However, the overuse of tetracycline (TC) has created a large amount of harmful residue to the environment, thus it is utmost necessary to remove the tetracycline residues in the aquatic environment. There are some conventional tetracycline removal methods, including adsorption, biological treatment, membrane filtration, oxidation, etc. Activated carbon derived from agricultural waste is considered a low-cost and efficient adsorbent for TC adsorption. The use of iron-rich materials also helps enhanced the adsorption capability. In this study, the adsorption process using the activated derived from rubber seed shell (RSSC) and modified with α-FeOOH was investigated. The optimized adsorption parameters were found as pH = 5, adsorbent dosage of 1 g L−1 catalyst, and contact time of 30 minutes. α-FeOOH/RSSC with RSSC:Fe(NO3)3.9H2O = 10:10 (RSSCF10) exhibited the best adsorption performance of 28.94% treatment efficiency and adsorption capacity of 65 mg g−1. The fitting data of kinetic and isotherm proved that tetracycline adsorption mainly resulted from monolayer physical adsorption, and the maximum adsorption capacities of RSSCF10 was 280.753 mg g−1. These results confirmed that RSSCF10 was a highly efficient and cost-effective adsorbent for the removal of tetracycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within this published article.

References

  • Ai, T., Jiang, X., Liu, Q., Lv, L., & Dai, S. (2020). Single-component and competitive adsorption of tetracycline and Zn(II) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: Studies on the kinetics, isotherms, and mechanism. RSC Advances, 10(35), 20427–20437. https://doi.org/10.1039/D0RA02346A

    Article  CAS  Google Scholar 

  • Akhtar, N., Aslam, Z., Shawabkeh, R. A., Baig, N., Aslam, U., Ihsanullah, I., & Khan, S. (2023). Decolorization of multicomponent dye-laden wastewater by modified waste fly ash: A parametric analysis for an anionic and cationic combination of dyes. Environmental Science and Pollution Research, 30(31), 77165–77180. https://doi.org/10.1007/s11356-023-27671-1

    Article  CAS  Google Scholar 

  • Al Juboury, M. F., Alshammari, M. H., Al-Juhaishi, M. R., Naji, L. A., Faisal, A. A. H., Naushad, M., & Lima, E. C. (2020). Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye. Water Science and Technology, 81(7), 1494–1506. https://doi.org/10.2166/wst.2020.241

    Article  CAS  Google Scholar 

  • Ansari, F., Ghaedi, M., Taghdiri, M., & Asfaram, A. (2016). Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method. Ultrasonics Sonochemistry, 33, 197–209. https://doi.org/10.1016/j.ultsonch.2016.05.004

    Article  CAS  Google Scholar 

  • Borba, L. L., Cuba, R. M. F., Terán, F. J. C., Castro, M. N., & Mendes, T. A. (2019). Use of adsorbent biochar from Pequi (Caryocar Brasiliense) husks for the removal of commercial formulation of glyphosate from aqueous media. Brazilian Archives of Biology and Technology, 62. https://doi.org/10.1590/1678-4324-2019180450

  • Borhan, A., Abdullah, N. A., Rashidi, N. A., & Taha, M. F. (2016). Removal of Cu2+ and Zn2+ from single metal aqueous solution using rubber-seed Shell based activated carbon. Procedia Engineering, 148, 694–701. https://doi.org/10.1016/j.proeng.2016.06.571

    Article  CAS  Google Scholar 

  • Borhan, A., Yusup, S., Lim, J. W., & Show, P. L. (2019). Characterization and modelling studies of activated carbon produced from rubber-seed Shell using KOH for CO2 adsorption. Processes, 7(11). https://doi.org/10.3390/pr7110855

  • Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., & Wei, L. (2018). Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology, 267, 431–437. https://doi.org/10.1016/j.biortech.2018.07.074

    Article  CAS  Google Scholar 

  • Chen, J., Yu, X., Li, C., Tang, X., & Sun, Y. (2020). Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate. Chemical Engineering Journal, 382. https://doi.org/10.1016/j.cej.2019.122916

  • Ciğeroğlu, Z., Kazan-Kaya, E. S., El Messaoudi, N., Fernine, Y., Américo-Pinheiro, J. H. P., & Jada, A. (2023). Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical calculation. J Mol Liq, 369. https://doi.org/10.1016/j.molliq.2022.120866

  • Co, H. T. T., Uong, T. T. M., & Nguyen, C. V. (2021). The impact of capital structure on Firm’s profitability: A case study of the rubber industry in Vietnam. Journal of Asian Finance, Economics and Business, 8(7), 0469–0476. https://doi.org/10.13106/jafeb.2021.vol8.no7.0469

    Article  Google Scholar 

  • Duong, V. N., Paulsen, P., Suriyasathaporn, W., Smulders, F. J., Kyule, M. N., Baumann, M. P., Zessin, K. H., & Pham, H. N. (2006). Preliminary analysis of tetracycline residues in marketed pork in Hanoi. Vietnam Annals of the New York Academy of Sciences, 1081, 534–542. https://doi.org/10.1196/annals.1373.081

    Article  CAS  Google Scholar 

  • El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z. G., & Bouich, A. (2021a). Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment & Resin Technology, 51(5), 477–488. https://doi.org/10.1108/PRT-04-2021-0045

    Article  Google Scholar 

  • El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Faska, N., & Jada, A. (2021b). Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution. Chemical Engineering Communications, 209(10), 1304–1315. https://doi.org/10.1080/00986445.2021.1963960

    Article  CAS  Google Scholar 

  • El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Fernine, Y., Lacherai, A., & Jada, A. (2022). Optimization based on response surface methodology of anionic dye desorption from two agricultural solid wastes. Chemistry Africa, 5(4), 1083–1095. https://doi.org/10.1007/s42250-022-00395-4

    Article  CAS  Google Scholar 

  • El Messaoudi, N., El Khomri, M., Chegini, Z. G., Dbik, A., Bentahar, S., Iqbal, M., Jada, A., & Lacherai, A. (2021). Desorption of crystal violet from alkali-treated agricultural material waste: An experimental study, kinetic, equilibrium and thermodynamic modeling. Pigment & Resin Technology, 51(3), 309–319. https://doi.org/10.1108/PRT-02-2021-0019

    Article  Google Scholar 

  • El Messaoudi, N., El Khomri, M., El Mouden, A., Bouich, A., Jada, A., Lacherai, A., Iqbal, H. M. N., Mulla, S. I., Kumar, V., & Américo-Pinheiro, J. H. P. (2022a). Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: A review. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03604-9

  • El Messaoudi, N., El Mouden, A., Fernine, Y., El Khomri, M., Bouich, A., Faska, N., Ciğeroğlu, Z., Américo-Pinheiro, J. H. P., Jada, A., & Lacherai, A. (2022b). Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21554-7

  • Eniola, J. O., Kumar, R., & Barakat, M. A. (2019). Adsorptive removal of antibiotics from water over natural and modified adsorbents. Environmental Science and Pollution Research International, 26(34), 34775–34788. https://doi.org/10.1007/s11356-019-06641-6

    Article  CAS  Google Scholar 

  • Figueroa, R. A., & MacKay, A. A. (2005). Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science and Technology, 39(17), 6664–6671. https://doi.org/10.1021/es048044l

    Article  CAS  Google Scholar 

  • Gao, F., Xu, Z., & Dai, Y. (2021). Removal of tetracycline from wastewater using magnetic biochar: a comparative study of performance based on the preparation method. Environmental Technology & Innovation, 24. https://doi.org/10.1016/j.eti.2021.101916

  • Ghanbari, F., Hassani, A., Wacławek, S., Wang, Z., Matyszczak, G., Lin, K.-Y. A., & Dolatabadi, M. (2021). Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: key operating parameters, mineralization and toxicity assessment. Separation and Purification Technology, 266. https://doi.org/10.1016/j.seppur.2021.118533

  • Hao, D., Chen, Y., Zhang, Y., & You, N. (2021a). Nanocomposites of zero-valent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines. Chemosphere, 284, 131342. https://doi.org/10.1016/j.chemosphere.2021.131342

    Article  CAS  Google Scholar 

  • Hao, M., Qiu, M., Yang, H., Hu, B., & Wang, X. (2021b). Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of The Total Environment, 760, 143333. https://doi.org/10.1016/j.scitotenv.2020.143333

    Article  CAS  Google Scholar 

  • Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R. A., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280–288. https://doi.org/10.1016/j.micromeso.2016.01.017

    Article  CAS  Google Scholar 

  • Jiao, S., Zheng, S., Yin, D., Wang, L., & Chen, L. (2008). Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere, 73(3), 377–382. https://doi.org/10.1016/j.chemosphere.2008.05.042

    Article  CAS  Google Scholar 

  • Khan, M. H., Bae, H., & Jung, J. Y. (2010). Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of Hazardous Materials, 181(1–3), 659–665. https://doi.org/10.1016/j.jhazmat.2010.05.063

    Article  CAS  Google Scholar 

  • Khomri, M. E., Messaoudi, N. E., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., Lacherai, A., & Jada, A. (2022). Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Materials, 5(6), 1679–1688. https://doi.org/10.1007/s42247-022-00390-y

    Article  CAS  Google Scholar 

  • Kobayashi, T., Suehiro, F., Cach Tuyen, B., & Suzuki, S. (2007). Distribution and diversity of tetracycline resistance genes encoding ribosomal protection proteins in Mekong river sediments in Vietnam. FEMS Microbiology Ecology, 59(3), 729–737. https://doi.org/10.1111/j.1574-6941.2006.00244.x

    Article  CAS  Google Scholar 

  • Korać Jačić, J., Milenković, M. R., Bajuk-Bogdanović, D., Stanković, D., Dimitrijević, M., & Spasojević, I. (2022). The impact of ferric iron and pH on photo-degradation of tetracycline in water. Journal of Photochemistry and Photobiology A: Chemistry, 433. https://doi.org/10.1016/j.jphotochem.2022.114155

  • Košutić, K., Dolar, D., Ašperger, D., & Kunst, B. (2007). Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology, 53(3), 244–249. https://doi.org/10.1016/j.seppur.2006.07.015

    Article  CAS  Google Scholar 

  • Li, X., Cui, K., Guo, Z., Yang, T., Cao, Y., Xiang, Y., Chen, H., & Xi, M. (2020). Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chemical Engineering Journal, 379. https://doi.org/10.1016/j.cej.2019.122324

  • Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W., & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240. https://doi.org/10.1016/j.biortech.2012.06.085

    Article  CAS  Google Scholar 

  • Lu, L., Liu, M., Chen, Y., & Luo, Y. (2021). Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(III)-loaded cellulose nanofibres. Royal Society Open Science, 8(8), 210336. https://doi.org/10.1098/rsos.210336

    Article  CAS  Google Scholar 

  • Luo, S., Qin, J., Wu, Y., & Feng, F. (2022). Tetracycline adsorption on magnetic sludge biochar: size effect of the Fe3O4 nanoparticles. Royal Society Open Science, 9(1), 210805. https://doi.org/10.1098/rsos.210805

    Article  CAS  Google Scholar 

  • Machado, F. C., Demicheli, C., Garnier-Suillerot, A., & Beraldo, H. (1995). Metal complexes of anhydrotetracycline. 2. Absorption and circular dichroism study of Mg(II), Al(III), and Fe(III) complexes. Possible influence of the Mg(II) complex on the toxic side effects of tetracycline. Journal of Inorganic Biochemistry, 60(3), 163–173. https://doi.org/10.1016/0162-0134(95)00017-I

    Article  CAS  Google Scholar 

  • Mei, Y., Xu, J., Zhang, Y., Li, B., Fan, S., & Xu, H. (2021). Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresource Technology, 325, 124732. https://doi.org/10.1016/j.biortech.2021.124732

    Article  CAS  Google Scholar 

  • Messaoudi, N. E., Mouden, A. E., Khomri, M. E., Bouich, A., Fernine, Y., Ciğeroğlu, Z., Américo-Pinheiro, J. H. P., Labjar, N., Jada, A., Sillanpää, M., & Lacherai, A. (2023). Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equilibria, 563. https://doi.org/10.1016/j.fluid.2022.113585

  • Oluodo, L. A., Huda, N., & Komilus, C. F. (2018). Potential utilization of rubber seed meal as feed and food. International Journal of Engineering & Technology, 7, 64–71. https://doi.org/10.14419/ijet.v7i4.43.25821

    Article  CAS  Google Scholar 

  • Olusegun, S. J., Osial, M., Souza, T. G. F., Krajewski, M., Rodrigues, G. L. S., Marek, P., & Krysinski, P. (2023). Comparative characteristics and enhanced removal of tetracycline and ceftriaxone by Fe3O4-lignin and Fe3O4-carbon-based lignin: Mechanism, thermodynamic evaluation, and DFT calculation. Journal of Molecular Liquids, 371. https://doi.org/10.1016/j.molliq.2022.121075

  • Pagketanang, T., Artnaseaw, A., Wongwicha, P., & Thabuot, M. (2015). Microporous activated carbon from KOH-activation of rubber seed-shells for application in capacitor electrode. Energy Procedia, 79, 651–656. https://doi.org/10.1016/j.egypro.2015.11.550

    Article  CAS  Google Scholar 

  • Parida, K., & Das, J. (1996). Studies on ferric oxide hydroxides. Journal of Colloid and Interface Science, 178(2), 586–593. https://doi.org/10.1006/jcis.1996.0155

    Article  CAS  Google Scholar 

  • Paunovic, O., Pap, S., Maletic, S., Taggart, M. A., Boskovic, N., & Turk Sekulic, M. (2019). Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. Journal of Colloid and Interface Science, 547, 350–360. https://doi.org/10.1016/j.jcis.2019.04.011

    Article  CAS  Google Scholar 

  • Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. (2017). Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 246, 150–159. https://doi.org/10.1016/j.biortech.2017.07.150

    Article  CAS  Google Scholar 

  • Pottmaier, D., Costa, M., Farrow, T., Oliveira, A. A. M., Alarcon, O., & Snape, C. (2013). Comparison of Rice husk and wheat straw: from slow and fast pyrolysis to char combustion. Energy Fuel, 27(11), 7115–7125. https://doi.org/10.1021/ef401748e

    Article  CAS  Google Scholar 

  • Priya, S. S., & Radha, K. V. (2017). A review on the adsorption studies of tetracycline onto various types of adsorbents. Chemical Engineering Communications, 204(8), 821–839. https://doi.org/10.1080/00986445.2015.1065820

    Article  CAS  Google Scholar 

  • Rehman, M. Z. U., Aslam, Z., Shawabkeh, R. A., Hussein, I. A., & Mahmood, N. (2020). Concurrent adsorption of cationic and anionic dyes from environmental water on amine functionalized carbon. Water Science & Technology, 81(3), 466–478. https://doi.org/10.2166/wst.2020.119

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Ocampo-Perez, R., Sanchez-Polo, M., Lopez-Penalver, J. J., & Gomez-Pacheco, C. V. (2018). Removal of Tetracyclines from water by adsorption/bioadsorption and advanced oxidation processes. A Short Review. Current Organic Chemistry, 22(10), 1005–1021. https://doi.org/10.2174/1385272822666180322124243

    Article  CAS  Google Scholar 

  • Ruan, H. D., Frost, R. L., Kloprogge, J. T., & Duong, L. (2002). Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 58(5), 967–981. https://doi.org/10.1016/s1386-1425(01)00574-1

    Article  CAS  Google Scholar 

  • Saadati, F., Keramati, N., & Ghazi, M. M. (2016). Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review. Critical Reviews in Environmental Science and Technology, 46(8), 757–782. https://doi.org/10.1080/10643389.2016.1159093

    Article  CAS  Google Scholar 

  • Saremi, F., Miroliaei, M. R., Shahabi Nejad, M., & Sheibani, H. (2020). Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. Journal of Molecular Liquids, 318. https://doi.org/10.1016/j.molliq.2020.114126

  • Şenol, Z. M., Messaoudi, N. E., Fernine, Y., & Keskin, Z. S. (2023). Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03781-1

  • Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., Yu, G., Winglee, J., & Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 305, 156–163. https://doi.org/10.1016/j.jhazmat.2015.11.047

    Article  CAS  Google Scholar 

  • Shao, S., Hu, Y., Cheng, C., Cheng, J., & Chen, Y. (2018). Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5. Chemosphere, 209, 35–43. https://doi.org/10.1016/j.chemosphere.2018.06.093

    Article  CAS  Google Scholar 

  • Shi, H., Yang, Y., Liu, M., Yan, C., Yue, H., & Zhou, J. (2014). Occurrence and distribution of antibiotics in the surface sediments of the Yangtze estuary and nearby coastal areas. Marine Pollution Bulletin, 83(1), 317–323. https://doi.org/10.1016/j.marpolbul.2014.04.034

    Article  CAS  Google Scholar 

  • Shi, H., Ni, J., Zheng, T., Wang, X., Wu, C., & Wang, Q. (2019). Remediation of wastewater contaminated by antibiotics. A review. Environmental Chemistry Letters, 18(2), 345–360. https://doi.org/10.1007/s10311-019-00945-2

    Article  CAS  Google Scholar 

  • Song, X., Li, K., Ning, P., Wang, C., Sun, X., Tang, L., Ruan, H., & Han, S. (2017). Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas. Applied Surface Science, 425, 130–140. https://doi.org/10.1016/j.apsusc.2017.06.328

    Article  CAS  Google Scholar 

  • Song, Y. X., Chen, S., You, N., Fan, H. T., & Sun, L. N. (2020). Nanocomposites of zero-valent Iron@activated carbon derived from corn stalk for adsorptive removal of tetracycline antibiotics. Chemosphere, 255, 126917. https://doi.org/10.1016/j.chemosphere.2020.126917

    Article  CAS  Google Scholar 

  • Spagnoli, A. A., Giannakoudakis, D. A., & Bashkova, S. (2017). Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters. Journal of Molecular Liquids, 229, 465–471. https://doi.org/10.1016/j.molliq.2016.12.106

    Article  CAS  Google Scholar 

  • Sun, S., Yao, H., Fu, W., Hua, L., Zhang, G., & Zhang, W. (2018). Reactive photo-Fenton ceramic membranes: synthesis, characterization and antifouling performance. Water Research, 144, 690–698. https://doi.org/10.1016/j.watres.2018.08.002

    Article  CAS  Google Scholar 

  • Ternes, T. A., Joss, A., & Siegrist, H. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science & Technology, 38(20), 392A–399A. https://doi.org/10.1021/es040639t

    Article  CAS  Google Scholar 

  • Tiya-Djowe, A., Dourges, M. A., Bruneel, J. L., & Deleuze, H. (2019). Plasma-deposition of alpha-FeOOH particles on biochar using a gliding arc discharge in humid air: a green and sustainable route for producing oxidation catalysts. RSC Advances, 9(9), 4797–4805. https://doi.org/10.1039/C9RA00671K

    Article  CAS  Google Scholar 

  • Tsegaye, F., Taddesse, A. M., Teju, E., & Aschalew, M. (2020). Preparation and sorption property study of Fe3O4/Al2O3/ZrO2 composite for the removal of cadmium, lead and chromium ions from aqueous solutions. Bulletin of the Chemical Society of Ethiopia, 34(1), 105–121. https://doi.org/10.4314/bcse.v34i1.10

    Article  CAS  Google Scholar 

  • Vernekar, D., & Jagadeesan, D. (2015). Tunable acid–base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catalysis Science & Technology, 5(8), 4029–4038. https://doi.org/10.1039/C5CY00361J

    Article  CAS  Google Scholar 

  • Wang, H., Fang, C., Wang, Q., Chu, Y., Song, Y., Chen, Y., & Xue, X. (2018a). Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances, 8(29), 16260–16268. https://doi.org/10.1039/C8RA01454J

    Article  CAS  Google Scholar 

  • Wang, J., Zhi, D., Zhou, H., He, X., & Zhang, D. (2018b). Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Research, 137, 324–334. https://doi.org/10.1016/j.watres.2018.03.030

    Article  CAS  Google Scholar 

  • Wang, W., Wang, Z., Li, K., Liu, Y., Xie, D., Shan, S., He, L., & Mei, Y. (2021). Enhanced adsorption of aqueous chlorinated aromatic compounds by nitrogen auto-doped biochar produced through pyrolysis of rubber-seed shell. Environmental Technology, 1-16. https://doi.org/10.1080/09593330.2021.1980829

  • Wei, J., Liu, Y., Li, J., Zhu, Y., Yu, H., & Peng, Y. (2019). Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar. Chemosphere, 236, 124254. https://doi.org/10.1016/j.chemosphere.2019.06.224

    Article  CAS  Google Scholar 

  • Wu, Z., Zhong, H., Yuan, X., Wang, H., Wang, L., Chen, X., Zeng, G., & Wu, Y. (2014). Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Research, 67, 330–344. https://doi.org/10.1016/j.watres.2014.09.026

    Article  CAS  Google Scholar 

  • Xin, S., Liu, G., Ma, X., Gong, J., Ma, B., Yan, Q., Chen, Q., Ma, D., Zhang, G., Gao, M., & Xin, Y. (2021). High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism. Applied Catalysis B: Environmental, 280. https://doi.org/10.1016/j.apcatb.2020.119386

  • Xu, J., Zhang, X., Sun, C., Wan, J., He, H., Wang, F., Dai, Y., Yang, S., Lin, Y., & Zhan, X. (2019). Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous cu-doped FeOOH composite in aqueous solution. Environmental Science and Pollution Research International, 26(3), 2820–2834. https://doi.org/10.1007/s11356-018-3777-1

    Article  CAS  Google Scholar 

  • Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 19(18). https://doi.org/10.1039/B821416F

  • Yang, X., Xu, G., Yu, H., & Zhang, Z. (2016). Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technology, 211, 566–573. https://doi.org/10.1016/j.biortech.2016.03.140

    Article  CAS  Google Scholar 

  • Yang, L., He, L., Xue, J., Wu, L., Ma, Y., Li, H., Peng, P., Li, M., & Zhang, Z. (2019). Highly efficient nickel (II) removal by sewage sludge biochar supported alpha-Fe2O3 and alpha-FeOOH: sorption characteristics and mechanisms. PLoS One, 14(6), e0218114. https://doi.org/10.1371/journal.pone.0218114

    Article  CAS  Google Scholar 

  • Yao, L., Yang, H., Chen, Z., Qiu, M., Hu, B., & Wang, X. (2020). Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere, 128576. https://doi.org/10.1016/j.chemosphere.2020.128576

  • Yi, Y., Tu, G., Eric Tsang, P., & Fang, Z. (2020). Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar. Chemical Engineering Journal, 380. https://doi.org/10.1016/j.cej.2019.122518

  • Zahir, A., Aslam, H. M. Z., Aslam, U., Abdullah, A., Ali, R., & Bello, M. M. (2020). Paspalum notatum grass-waste-based adsorbent for rhodamine B removal from polluted water. Chemical & Biochemical Engineering Quarterly, 34(2), 93–104. https://doi.org/10.15255/CABEQ.2020.1830

    Article  CAS  Google Scholar 

  • Zang, J., Wu, T., Song, H., Zhou, N., Fan, S., Xie, Z., & Tang, J. (2019). Removal of tetracycline by hydrous ferric oxide: adsorption kinetics, isotherms, and mechanism. International Journal of Environmental Research and Public Health, 16(22). https://doi.org/10.3390/ijerph16224580

  • Zhang, Z., Lan, H., Liu, H., Li, H., & Qu, J. (2015). Iron-incorporated mesoporous silica for enhanced adsorption of tetracycline in aqueous solution. RSC Advances, 5(53), 42407–42413. https://doi.org/10.1039/c5ra05478h

    Article  CAS  Google Scholar 

  • Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N., & Wu, W. (2016). Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 172, 193–200. https://doi.org/10.1016/j.jenvman.2016.02.038

    Article  CAS  Google Scholar 

  • Zhang, Z., Ding, C., Li, Y., Ke, H., & Cheng, G. (2020). Efficient removal of tetracycline hydrochloride from aqueous solution by mesoporous cage MOF-818. SN. Applied Sciences, 2(4). https://doi.org/10.1007/s42452-020-2514-9

  • Zhang, X., Rong, M., Cao, H., & Tan, T. (2022). One-pot synthesis of rubber seed shell-derived N-doped Ultramicroporous carbons for efficient CO2 adsorption. Nanomaterials (Basel), 12(11). https://doi.org/10.3390/nano12111889

  • Zhou, J., Ma, F., & Guo, H. (2020). Adsorption behavior of tetracycline from aqueous solution on ferroferric oxide nanoparticles assisted powdered activated carbon. Chemical Engineering Journal, 384. https://doi.org/10.1016/j.cej.2019.123290

  • Zuo, Y., Fu, X., Chen, Y., Cui, G., & Liu, M. (2016). Phosphorus removal from wastewater using a lanthanum oxide-loaded ceramic adsorbent. Adsorption, 22(8), 1091–1098. https://doi.org/10.1007/s10450-016-9831-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number TX2023-24-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to My Linh Nguyen or Thanh Tung Nguyen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.L., Nguyen Hoang, T.T., Le, D.T. et al. Adsorption of tetracycline using the α-FeOOH-loaded rubber-seed-shell-derived activated carbon. Water Air Soil Pollut 234, 591 (2023). https://doi.org/10.1007/s11270-023-06568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06568-2

Keywords

Navigation