Skip to main content
Log in

Treatment of Dyes Wastewater by the Catalytic Wet Persulfate Oxidation Process in Reactors Using Red Mud Combined with Biochar as Catalyst

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid-modified red mud supported by peanut shells (MRP) catalysts were prepared for the catalytic wet persulfate oxidation (CWPO) process of dyes wastewater (containing methyl orange (MO), NH3-N, and Cr6+) in batch and continuous fixed bed reactors. Importantly, the influence of NH3-N and Cr6+ on the catalytic performance of the MRP catalyst was primarily studied. In the CWPO process, the reactors had a remarkable degradation efficiency (72–97%) of MO in the dyes wastewater. In the batch reactor, with the increase of NH3-N concentration (5–20 mg L−1), the degradation efficiency of MO was maintained at 93%. When NH3-N, Cr6+, and MO coexist, the degradation of MO had slight inhibition with 87.24%, which indicated that MO concentration was still controlled by MRP under the coexistence system, and the order of the removal effect of MRP on the three pollutants in the reactors was as follows: MO > NH3-N > Cr6+. Furthermore, in the fixed reactor, with the increasing of NH3-N or Cr6+ concentration, the MO degradation removal decreased to about 84%. The results showed that the degradation effect of MO in a fixed bed is still considerable. Then, the SEM and FTIR results indicated that SO4·−, ·OH, and O2−· generated in the CWPO process and Fe2+ and oxygen-containing functional groups on MRP played a major role on the degradation of pollutants. This study showed that this novel MRP is a promising catalyst with promising applications in composite dyes wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Ahn, Y. Y., & Yun, E. (2019). Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism. Korean Journal of Chemical Engineering, 36(11), 1767–1779. https://doi.org/10.1007/s11814-019-0398-4

    Article  CAS  Google Scholar 

  • Amiri, M. J., Faraji, A., Azizi, M., Nejad, B. G., & Arshadi, M. (2021). Recycling bone waste and cobalt-wastewater into a highly stable and efficient activator of peroxymonosulfate for dye and HEPES degradation. Process Safety Environment Protecion, 147, 626–641. https://doi.org/10.1016/j.psep.2020.12.039

    Article  CAS  Google Scholar 

  • An, Q., Jiang, Y. Q., Nan, H. Y., Yu, Y., & Jiang, J. N. (2019). Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere, 214, 846–854. https://doi.org/10.1016/j.chemosphere.2018.10.007

    Article  CAS  Google Scholar 

  • An, Q., Jin, N. J., Deng, S. M., Zhao, B., Liu, M., Ran, B. B., & Zhang, L. S. (2022). Ni(II), Cr(VI), Cu(II) and nitrate removal by the co-system of Pseudomonas hibiscicola strain L1 immobilized on peanut shell biochar. Science of the Total Environment, 814. https://doi.org/10.1016/j.scitotenv.2021.152635

  • An, Q., Liu, C., Deng, S., Tang, M., Zhou, C., Huang, Z., Yang, M., & Zhao, B. (2022). Application of biochar activated persulfate in the treatment of typical azo pigment wastewater. Journal of Environmental Management, 324, 116323. https://doi.org/10.1016/j.jenvman.2022.116323

    Article  CAS  Google Scholar 

  • Babu, M. J., Botsa, S. M., Rani, S. J., Venkateswararao, B., & Muralikrishna, R. (2020). Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite. Advanced Composites and Hybrid Materials, 3(2), 205–212. https://doi.org/10.1007/s42114-020-00149-1

    Article  Google Scholar 

  • Bian, Y., Sun, H., Luo, Y. X., Gao, Q. Y., Li, G. S., & Wang, Y. T. (2018). Effect of inorganic salt ions on the adsorption of quinoline using coal powder. Water Science and Technology, 78(3), 496–505. https://doi.org/10.2166/wst.2018.300

    Article  CAS  Google Scholar 

  • Cai, W. Q., Wei, J. H., Li, Z. L., Liu, Y., Zhou, J. B., & Han, B. W. (2019). Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 563, 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062

    Article  CAS  Google Scholar 

  • Cheng, H., Liu, Y. L., & Li, X. (2021). Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr6+ from dye wastewater. Journal of Hazardous Materials, 415. https://doi.org/10.1016/j.jhazmat.2021.125749

  • Cheng, X., Guo, H. G., Zhang, Y. L., Korshin, G. V., & Yang, B. (2019). Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water Research, 157, 406–414. https://doi.org/10.1016/j.watres.2019.03.096

    Article  CAS  Google Scholar 

  • Cheng, X., Guo, H. G., Zhang, Y. L., Wu, X., & Liu, Y. (2017). Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Research, 113, 80–88. https://doi.org/10.1016/j.watres.2017.02.016

    Article  CAS  Google Scholar 

  • Cho, D. W., Yoon, K., Ahn, Y., Su, Y. Q., Tsang, D. C. W., Hou, D. Y., Ok, Y. S., & Son, H. (2019). Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. Journal of Hazardous Materials, 374, 412–419. https://doi.org/10.1016/j.jhazmat.2019.04.071

    Article  CAS  Google Scholar 

  • Ding, J., Pan, Y. F., Li, L. J., Liu, H. Z., Zhang, Q. X., Gao, G. D., & Pan, B. C. (2020). Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. Chemical Engineering Journal, 384. https://doi.org/10.1016/j.cej.2019.123232

  • Dong, Y., Yuan, H., Zhang, R., & Zhu, N. (2019). Removal of ammonia nitrogen from wastewater: A review. Transactions of the Asabe, 62(6), 1767–1778. https://doi.org/10.13031/trans.13671

    Article  CAS  Google Scholar 

  • Du, Y. F., Dai, M., Cao, J. F., & Peng, C. S. (2019). Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb(ii) and Cr(vi) from aqueous solutions. RSC Advances, 9(57), 33486–33496. https://doi.org/10.1039/c9ra06978j

    Article  CAS  Google Scholar 

  • Duarte, F., Morais, V., Maldonado-Hodar, F. J., & Madeira, L. M. (2013). Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chemical Engineering Journal, 232, 34–41. https://doi.org/10.1016/j.cej.2013.07.061

    Article  CAS  Google Scholar 

  • Gao, Y. J., Zhang, J., Chen, C. W., Du, Y., Teng, G. P., & Wu, Z. Y. (2021). Functional biochar fabricated from waste red mud and corn straw in China for acidic dye wastewater treatment. Journal Cleaner Production, 320. https://doi.org/10.1016/j.jclepro.2021.128887

  • Gnanasekaran, G., Sudhakaran, M. S. P., Kulmatova, D., Han, J., Arthanareeswaran, G., Jwa, E., & Mok, Y. S. (2021). Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere, 284. https://doi.org/10.1016/j.chemosphere.2021.131244

  • Govindan, K., Suresh, A. K., Sakthivel, T., Kalpana, M., Raja, M., Gunasekaran, V., & Jang, A. (2019). Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124479

  • Guo, Z. W., Bai, G., Huang, B., Cai, N., Guo, P. R., & Chen, L. (2021). Preparation and application of a novel biochar-supported red mud catalyst: Active sites and catalytic mechanism. Journal of Hazardous Materials, 408. https://doi.org/10.1016/j.jhazmat.2020.124802

  • Huang, Z. C., Liu, C. G., Zhu, X. J., Xiang, G. Q., Zeng, C. H., & Zhong, Y. Q. (2020). Behaviors of dewaterability and heavy metals of waste activated sludge conditioned by heat-activated peroxymonosulfate oxidation. Chemical Papers, 74(2), 641–650. https://doi.org/10.1007/s11696-019-00912-9

    Article  CAS  Google Scholar 

  • Hussain, I., Zhang, Y. Q., Huang, S. B., & Du, X. Z. (2012). Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal, 203, 269–276. https://doi.org/10.1016/j.cej.2012.06.120

    Article  CAS  Google Scholar 

  • Ji, J. T., Peng, Y. Z., Wang, B., Mai, W. K., Li, X. Y., Zhang, Q., & Wang, S. Y. (2018). Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation. Chemosphere, 209, 53–60. https://doi.org/10.1016/j.chemosphere.2018.05.193

    Article  CAS  Google Scholar 

  • Kabdasli, I., Tunay, O., Ozturk, I., Yilmaz, S., & Arikan, O. (2000). Ammonia removal from young landfill leachate by magnesium ammonium phosphate precipitation and air stripping. Water Science Technology, 41(1), 237–240. https://doi.org/10.2166/wst.2000.0034

    Article  CAS  Google Scholar 

  • Kang, K., Park, S., 엄병환, & Kim, Y. K. (2013). Applicability assessment of acid treated red mud as adsorbent material for removal of six-valent chromium from seawater. Journal Korean Society Agricultural Engineers, 55(5), 17–23. https://doi.org/10.5389/KSAE.2013.55.5.017

    Article  Google Scholar 

  • Khan, A. M., Manea, Y. K., & Nabi, S. A. (2019). Synthesis and characterization of nanocomposite acrylamide TIN(IV) silicomolybdate: Photocatalytic activity and chromatographic column separations. Journal of Analytical Chemistry, 74(4), 330–338. https://doi.org/10.1134/s1061934819040026

    Article  CAS  Google Scholar 

  • Li, M., Xia, D. S., Xu, H. M., Guan, Z. Y., & Li, D. Y. (2021). Iron oxychloride composite sludge-derived biochar for efficient activation of peroxymonosulfate to degrade organic pollutants in wastewater. Journal of Cleaner Production, 329. https://doi.org/10.1016/j.jclepro.2021.129656

  • Li, W., Mu, B. N., & Yang, Y. Q. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157–170. https://doi.org/10.1016/j.biortech.2019.01.002

    Article  CAS  Google Scholar 

  • Li, X. N., Huang, X., Xi, S. B., Miao, S., Ding, J., Cai, W. Z., Liu, S., Yang, X. L., Yang, H. B., Gao, J. J., Wang, J. H., Huang, Y. Q., Zhang, T., & Liu, B. (2018). Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. Journal of the American Chemical Society, 140(39), 12469–12475. https://doi.org/10.1021/jacs.8b05992

    Article  CAS  Google Scholar 

  • Lin, H., Zhong, X., Ciotonea, C., Fan, X. H., Mao, X. Y., Li, Y. T., Deng, B., Zhang, H., & Royer, S. (2018). Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst. Applied Catalysis B-Environmental, 230, 1–10. https://doi.org/10.1016/j.apcatb.2018.02.014

    Article  CAS  Google Scholar 

  • Lin, K., Afzal, S., Xu, L., Ding, T., Li, F., & Zhang, M. (2023). Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation. Environmental Pollution, 327, 121454. https://doi.org/10.1016/j.envpol.2023.121454

    Article  CAS  Google Scholar 

  • Liu, C. R., Zhang, J., Wang, Q. G., Zhou, P., & Hu, S. K. (2020). Ultrasound accelerated oxidation of organic dyes by a micron-sized copper/peroxomonosulfate system. Clean-Soil Air Water, 48(2). https://doi.org/10.1002/clen.201900455

  • Liu, F. Z., Xu, Y., Zhang, B. S., Liu, Y. L., & Zhang, H. (2020). Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124611

  • Liu, H. X., Xie, J. H., Zhao, J. X., Xue, P., Lv, X., & Sun, S. L. (2022). Hydrophilic ionic-liquid grafted poly(vinylidene fluoride) membranes with excellent cationic dye and oil-water emulsion removal performance. Journal of Material Science, 57(7), 4876–4894. https://doi.org/10.1007/s10853-022-06911-8

    Article  CAS  Google Scholar 

  • Liu, N., Zhang, Y. T., Xu, C., Liu, P., Lv, J., Liu, Y. Y., & Wang, Q. Y. (2020). Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. Journal of Hazardous Materials, 384. https://doi.org/10.1016/j.jhazmat.2019.121371

  • Long, Y. K., Bu, S. F., Huang, Y. X., Shao, Y. Q., Xiao, L., & Shi, X. W. (2019). N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism. Chemosphere, 216, 545–555. https://doi.org/10.1016/j.chemosphere.2018.10.175

    Article  CAS  Google Scholar 

  • Ma, H. F., Yang, J. J., Gao, X., Liu, Z. B., Liu, X. X., & Xu, Z. G. (2019). Removal of chromium (VI) from water by porous carbon derived from corn straw: Influencing factors, regeneration and mechanism. Journal of Hazardous Materials, 369, 550–560. https://doi.org/10.1016/j.jhazmat.2019.02.063

    Article  CAS  Google Scholar 

  • Nagar, N., & Devra, V. (2017). Activation of peroxodisulfate and peroxomonosulfate by green synthesized copper nanoparticles for methyl orange degradation: A kinetic study. Journal of Environmental Chemical Engineering, 5(6), 5793–5800. https://doi.org/10.1016/j.jece.2017.11.014

    Article  CAS  Google Scholar 

  • Nakamura, T., Uchida, R., Kubota, M., Matsuda, H., & Fukuta, T. (2014). Comparative studies of wet oxidation of ammonium compounds using persulfate at temperatures of 313-343 K under ambient air pressure. Chemical Engineering Journal, 250, 205–213. https://doi.org/10.1016/j.cej.2014.04.007

    Article  CAS  Google Scholar 

  • Park, M. H., Jeong, S., & Kim, J. Y. (2019). Adsorption of NH3-N onto rice straw-derived biochar. Journal of Environmental Chemical Engineering, 7(2), 103039. https://doi.org/10.1016/j.jece.2019.103039

    Article  CAS  Google Scholar 

  • Qian, L. B., Shang, X., Zhang, B., Zhang, W. Y., Su, A. Q., Chen, Y., Ouyang, D., Han, L., Yan, J. C., & Chen, M. F. (2019). Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere, 215, 739–745. https://doi.org/10.1016/j.chemosphere.2018.10.030

    Article  CAS  Google Scholar 

  • Quan, G. X., Sun, W. J., Yan, J. L., & Lan, Y. Q. (2014). Nanoscale zero-valent iron supported on biochar: Characterization and reactivity for degradation of acid orange 7 from aqueous solution. Water, Air, and Soil Pollution, 225(11). https://doi.org/10.1007/s11270-014-2195-3

  • Shavisi, Y., Sharifnia, S., Hosseini, S. N., & Khadivi, M. A. (2014). Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. Journal of Industrial and Engineering Chemistry, 20(1), 278–283. https://doi.org/10.1016/j.jiec.2013.03.037

    Article  CAS  Google Scholar 

  • Siciliano, A. (2016). Removal of Cr(VI) from water using a new reactive material: Magnesium oxide supported nanoscale zero-valent iron. Materials, 9(8). https://doi.org/10.3390/ma9080666

  • Streit, A. F. M., Cortes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C., Perondi, D., & Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science of the Total Environment, 660, 277–287. https://doi.org/10.1016/j.scitotenv.2019.01.027

    Article  CAS  Google Scholar 

  • Sumaraj, Xiong, Z., Sarmah, A. K., & Padhye, L. P. (2020). Acidic surface functional groups control chemisorption of ammonium onto carbon materials in aqueous media. Science of the Total Environment, 698. https://doi.org/10.1016/j.scitotenv.2019.134193

  • Sun, M., Zhang, G., Qin, Y. H., Cao, M. J., Liu, Y., Li, J. H., Qu, J. H., & Liu, H. J. (2015). Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution. Environmental Science & Technology, 49(15), 9289–9297. https://doi.org/10.1021/acs.est.5b01759

    Article  CAS  Google Scholar 

  • Sun, R. R., Zhang, X., Wang, C. Q., & Cao, Y. J. (2021). Co-carbonization of red mud and waste sawdust for functional application as Fenton catalyst: Evaluation of catalytic activity and mechanism. Journal of Environment Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105368

  • Tang, L., Liu, Y. I., Wang, J. J., Zeng, G. M., Deng, Y. C., Dong, H. R., Feng, H. P., Wang, J. J., & Peng, B. (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Applied of Catalysis B-Environment, 231, 1–10. https://doi.org/10.1016/j.apcatb.2018.02.059

    Article  CAS  Google Scholar 

  • Tunay, O., Kabdasli, I., Eremektar, G., & Orhon, D. (1996). Color removal from textile wastewaters. Water Science Technology, 34(11), 9–16. https://doi.org/10.1016/S0273-1223(96)00815-3

    Article  CAS  Google Scholar 

  • Wang, J., Shen, M., Wang, H. L., Du, Y. S., Zhou, X. Q., Liao, Z. W., Wang, H. B., & Chen, Z. Q. (2020). Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction. Science of the Total Environment, 740. https://doi.org/10.1016/j.scitotenv.2020.140388

  • Wang, L., Wang, Y. J., Ma, F., Tankpa, V., Bai, S. S., Guo, X. M., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 668, 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011

    Article  CAS  Google Scholar 

  • Wang, S. W., Leonard, S. S., Ye, J. P., Gao, N., Wang, L. Y., & Shi, X. L. (2004). Role of reactive oxygen species and Cr(VI) in Ras-mediated signal transduction. Molecular Cellelar Biochemistry, 255(1-2), 119–127. https://doi.org/10.1023/B:MCBI.0000007268.42733.53

    Article  CAS  Google Scholar 

  • Wei, J., Zheng, Z. G., Huang, L., Qiu, Z. G., Xia, Q. B., Zhou, S. H., Tong, X., & Zeng, D. C. (2023). Effective removal of Orange II dye by porous Fe-base amorphous/Cu bimetallic composite. Colloids Surface a-Physicochemical Engineering Aspects, 656. https://doi.org/10.1016/j.colsurfa.2022.130388

  • Wu, J., Li, Q. M., Li, W. T., Li, Y., Wang, G. X., Li, A. M., & Li, H. B. (2020). Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119694

  • Xia, S. P., Song, Z. L., Jeyakumar, P., Bolan, N., & Wang, H. L. (2020). Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 42(6), 1543–1567. https://doi.org/10.1007/s10653-019-00445-w

    Article  CAS  Google Scholar 

  • Xiang, S. Y., Liu, Y. H., Zhang, G. M., Ruan, R., Wang, Y. P., Wu, X. D., Zheng, H. L., Zhang, Q., & Cao, L. P. (2020). New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World Journal of Microbiology & Biotechnology, 36(10). https://doi.org/10.1007/s11274-020-02921-3

  • Xu, H. M., Cooper, W. J., Jung, J., & Song, W. H. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632–638. https://doi.org/10.1016/j.watres.2010.08.024

    Article  CAS  Google Scholar 

  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  • Yang, Z., Duan, X. G., Wang, J., Li, Y., Fan, X. B., Zhang, F. B., Zhang, G. L., & Peng, W. C. (2020). Facile synthesis of high-performance nitrogen-doped hierarchically porous carbon for catalytic oxidation. ACS Sustainable Chemistry & Engineering, 8(10), 4236–4243. https://doi.org/10.1021/acssuschemeng.9b07469

    Article  CAS  Google Scholar 

  • Yin, R. L., Guo, W. Q., Wang, H. Z., Du, J. S., Wu, Q. L., Chang, J. S., & Ren, N. Q. (2019). Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chemical Engineering Journal, 357, 589–599. https://doi.org/10.1016/j.cej.2018.09.184

    Article  CAS  Google Scholar 

  • Yu, J. F., Tang, L., Pang, Y., Zeng, G. M., Wang, J. J., Deng, Y. C., Liu, Y. N., Feng, H. P., Chen, S., & Ren, X. Y. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146–159. https://doi.org/10.1016/j.cej.2019.01.163

    Article  CAS  Google Scholar 

  • Zhang, H. Y., Li, A. M., Zhang, W., & Shuang, C. D. (2016). Combination of Na-modified zeolite and anion exchange resin for advanced treatment of a high ammonia-nitrogen content municipal effluent. Journal of Colloid and Interface Science, 468, 128–135. https://doi.org/10.1016/j.jcis.2015.10.006

    Article  CAS  Google Scholar 

  • Zhang, W., Tang, G., Yan, J. W., Zhao, L. B., Zhou, X., Wang, H. L., Feng, Y. K., Guo, Y. F., Wu, J. F., Chen, W. T., Yuan, N. J., & Li, M. J. (2020). The decolorization of methyl orange by persulfate activated with natural vanadium-titanium magnetite. Applied Surface Science, 509. https://doi.org/10.1016/j.apsusc.2019.144886

  • Zhang, X., Fu, W. J., Yin, Y. X., Chen, Z. H., Qiu, R. L., Simonnot, M. O., & Wang, X. F. (2018). Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies. Bioresource Technology, 268, 149–157. https://doi.org/10.1016/j.biortech.2018.07.125

    Article  CAS  Google Scholar 

  • Zheng, Y. Q., Cheng, B., You, W., Yu, J. G., & Ho, W. K. (2019). 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(VI) ions. Journal of Hazardous Materials, 369, 214–225. https://doi.org/10.1016/j.jhazmat.2019.02.013

    Article  CAS  Google Scholar 

  • Zhou, X. R., Zeng, Z. T., Zeng, G. M., Lai, C., Xiao, R., Liu, S. Y., Huang, D. L., Qin, L., Liu, X. G., Li, B. S., Yi, H., Fu, Y. K., Li, L., & Wang, Z. H. (2020). Persulfate activation by swine bone char-derived hierarchical porous carbon: Multiple mechanism system for organic pollutant degradation in aqueous media. Chemical Engineering Journal, 383. https://doi.org/10.1016/j.cej.2019.123091

  • Zhu, Z. Q., Huang, C. P., Zhu, Y. N., Wei, W. H., & Qin, H. (2018). A hierarchical porous adsorbent of nano-alpha-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. Journal of Water Process Engineering, 25, 96–104. https://doi.org/10.1016/j.jwpe.2018.05.010

    Article  Google Scholar 

  • Zhuge, Z. H., Liu, X. J., Chen, T. Q., Gong, Y. Y., Li, C., Niu, L. Y., Xu, S. Q., Xu, X. T., Alothman, Z. A., Sun, C. Q., Shapter, J. G., & Yamauchi, Y. (2021). Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chemical Engineering Journal, 421. https://doi.org/10.1016/j.cej.2020.127838

  • Zou, C., Ma, C., Zhao, J. X., Shi, R. M., & Li, X. M. (2017). Characterization and non-isothermal kinetics of shenmu bituminous coal devolatilization by TG-MS. Journal of Analytical and Applied Pyrolysis, 127, 309–320. https://doi.org/10.1016/j.jaap.2017.07.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the College of Environment and Ecology of Chongqing University for its research facilities, as well as the editors and anonymous reviewers for their valuable comments. We would like to thank the Analytical and Testing Center of Chongqing University for SEM and FTIR characterization.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51209240), Technology Innovation and Application Demonstration of Chongqing Science and Technology Planning Project (Project No. cstc2018jscx-msybX0308), and Technology Foresight and System Innovation of Chongqing Science and Technology Planning Projects (Project No. cstc2021jsyj-zzysbAX0050).

Author information

Authors and Affiliations

Authors

Contributions

Shuman Deng: conceptualization, methodology, validation, formal analysis, writing—original draft, supervision. Zheng Li & Qiang An: investigation, formal analysis, writing—original draft. Meng Tang: formal analysis, validation, supervision. Chenlu Liu: formal analysis, data curation. Zihao Yang and Bohan Xu: resources, visualization, writing—review and editing. bin zhao: visualization writing—review and editing, resources.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang An.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2281 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Li, Z., An, Q. et al. Treatment of Dyes Wastewater by the Catalytic Wet Persulfate Oxidation Process in Reactors Using Red Mud Combined with Biochar as Catalyst. Water Air Soil Pollut 234, 573 (2023). https://doi.org/10.1007/s11270-023-06555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06555-7

Keywords

Navigation