Skip to main content
Log in

The Use of Sugarcane Bagasse and Yeast Extract as Agro-Industrial Coproducts for Bioremediation Strategies of Paper Mill Wastewater Using Pseudomonas putida

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The disposal of paper mill wastewater (PMW) is a serious environmental issue for the Mediterranean countries. In present study, the Box-Behnken design was used to determine the optimum experimental conditions of coproduct sugarcane bagasse, yeast extract, inoculum size, and temperature on biodegradation of PMW by Pseudomonas putida. This species has manganese and lignin peroxidase activities inducing the valorisation of the treated paper mill effluent in agriculture. The variables involved in Box-Behnken design included sugarcane bagasse (0–0.5–1 ppm), yeast extract (1–2–3%), temperature (20–25–30 °C), and inoculum size (0.6–0.8–1) level with bacterial-treated PMW to determine the effects on batter chemical oxygen demand (COD) and color removal. Predicted values of parameters using model equations were in good agreement with the experimental values with R2 ≥ 0.94. The maximum color and COD removal were obtained at optimized conditions of 1 ppm sugarcane bagasse at 2% of yeast extract with 1.0 inoculum size in temperature 25 °C. It must be noted that the valorization and exploitation of a coproduct such as sugarcane and yeast extract can have a considerable impact on the COD and color removal of PMW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  • Altayb, H. N., Kouidhi, B., Baothman, O. A. S., Abdulhakim, J. A., Ayed, L., Hager, M., & Chaieb, K. (2021). Mathematical modelling and optimization by the application of full factorial design and response surface methodology approach for decolourization of dyes by a newly isolated Photobacterium ganghwense. Journal of Water and Process Engineering, 44, 102429.

    Article  Google Scholar 

  • Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2009a). Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World Journal of Microbiology and Biotechnology, 25, 705–711.

    Article  CAS  Google Scholar 

  • Ayed, L., Cheriaa, J., Laadhari, N., Cheref, A., & Bakhrouf, A. (2009b). Biodegradation of crystal violet by an isolated Bacillus sp. Annals of Microbiology, 59, 267–272.

    Article  CAS  Google Scholar 

  • Ayed, L., Khelifi, E., Ben Jannet, H., Miladi, H., Cheref, A., Achour, S., & Bakhrouf, A. (2010). Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: produced enzymes and metabolites characterization. Chemical Engineering Journal, 165, 200–208.

    Article  CAS  Google Scholar 

  • Ayed, L., Achour, S., Khelifi, E., Cheref, A., & Bakhrouf, A. (2010a). Use of active consortia of constructed ternary bacterial cultures via mixture design for Congo Red decolorization enhancement. Chemical Engineering Journal, 162, 495–502.

    Article  CAS  Google Scholar 

  • Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2010b). Biodegradation of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260, 137–146.

    Article  CAS  Google Scholar 

  • Ayed, L., Harbi, B., Cheref, A., Bakhrouf, A., & Achour, S. (2010c). Application of the mixture design to decolorize azo-dye methyl red to design the formulation of active consortia of bacterial cultures. Water Science and Technology, 62, 2837–2845.

    Article  CAS  Google Scholar 

  • Ayed, L., Bekir, K., Achour, S., Cheref, A., & Bakhrouf, A. (2016). Exploring bioaugmentation strategies for azo dye CI Reactive Violet 5 decolourization using bacterial mixture: Dye response surface methodology. Water and Environment Journal, 31, 80–89.

    Article  Google Scholar 

  • Ayed, L., Bouguerra, A., Charef, A., Bakhrouf, A., & El Mzoughi, R. (2019). Biodegradation of olive mill wastewater by a newly isolated novel bacterial consortium under RSM optimized culture conditions. Journal of Water Process Engineering, 32, 100986.

    Article  Google Scholar 

  • Ayed, L., Ksibi, I., Cheref, A., & El Mzoughi, R. (2020a). Hybrid coagulation-flocculation and anaerobic-aerobic biological treatment for industrial textile wastewater: Pilot case study. The Journal of the Textile Institute. https://doi.org/10.1080/00405000.2020.1731273

    Article  Google Scholar 

  • Ayed, L., Ladhari, N., Achour, S., & Chaieb, K. (2020b). Decolorization of Reactive Yellow 174 dye in real textile wastewater by active consortium: Experimental factorial design for bioremediation process optimization. The Journal of the Textile Institute. https://doi.org/10.1080/00405000.2020.1824416

    Article  Google Scholar 

  • Ayed, L., Bekir, K., & Jabeur, C. (2022). Modelling and optimization of biodegradation of methylene blue by Staphylococcus aureus through a statistical optimization process: A sustainable approach for waste management. Water Science and Technology, 86, 380–394.

    Article  CAS  Google Scholar 

  • Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101, 4767–4774.

    Article  CAS  Google Scholar 

  • Boulaadjoul, S., Zemmouri, H., Bendjama, Z., & Drouiche, N. A. (2018). Novel use of Moringa oleifera seed powder in enhancing the primary treatment of paper mill effluent. Chemosphere, 206, 142–149.

    Article  CAS  Google Scholar 

  • Cao, Y., & Tan, H. (2004). Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 705, 189–193.

    Article  CAS  Google Scholar 

  • Chaieb, K., Kouidhi, B., Ayed, L., Bakr, H. S., Abdulhakim, J. A., Hajri, A., & Altayb, H. N. (2023). Enhanced textile dye removal from wastewater using natural biosorbent and Shewanella algae B29: Application of Box Behnken design and genomic approach. Bioresource Technology, 374, 128755.

    Article  CAS  Google Scholar 

  • Chandra, R., & Singh, R. (2012). Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochemical Engineering Journal, 61, 49–58.

    Article  CAS  Google Scholar 

  • Couto, S. R., & Herrera, J. L. T. (2006). Industrial, biotechnological applications of laccases: A review. Biotechnology Advances, 24, 500–513.

    Article  Google Scholar 

  • Haq, I., Kumar, S., Raj, A., Lohani, M., & Satyanarayana, G. N. V. (2017). Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere, 169, 642–650.

    Article  CAS  Google Scholar 

  • Ketep, S. F., Fourest, E., & Bergel, A. (2013). Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions. Bioresource Technology, 149, 117–125.

    Article  CAS  Google Scholar 

  • Ko, J., Shimizu, Y., Ikeda, K., Kim, S. K., Park, C. H., & Matsui, S. (2009). Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability an degradation by products. Bioresource Technology, 100, 1622–1627.

    Article  CAS  Google Scholar 

  • Malcolm, R. L. (1990). Humic substances in soil and crop sciences (Vol. 677). American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Merayo, N., Hermosilla, D., Blanco, L., Cortijo, L., & Blanco, Á. (2013). Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry. Journal of Hazardous Materials, 262, 420–427.

    Article  CAS  Google Scholar 

  • Mohamad Ibrahim, M. N., Ahmed-Haras, M. R., Sipaut, C. S., Aboul-Enein, H. Y., & Mohamed, A. A. (2010). Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydrate Polymers, 80, 1102–1110.

    Article  CAS  Google Scholar 

  • Ruttimann, C., Schwember, E., Salas, L., Cullen, D., & Vicuna, R. (1992). Ligninolytic enzymes of white rot basidiomycete Phelbia brevispora and Cereporiopsis subvermispora. Biotechnology and Applied Biochemistry, 16, 64–76.

    CAS  Google Scholar 

  • Senesi, N., Miano, T. M., & Brunetti, G. (1996). Humic-like substances in organic amendments and effects on native soil humic substances. In Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems (pp. 531-593). New York: Elsevier. https://doi.org/10.1016/B978-044481516-3/50015-3

  • Sengel-Turk, C. T., Ozkan, E., & Bakar-Ates, F. (2022). Box-Behnken design optimization and in vitro cell based evaluation of piroxicam loaded core-shell type hybrid nano carriers for prostate cancer. Journal of Pharmaceutical and Biomedical Analysis, 216, 114799.

    Article  CAS  Google Scholar 

  • Singhal, A., & Thakur, I. S. (2009). Decolourization and detoxification of pulp and paper mill effluent by Emericella nidulansvar. nidulans. Journal of Hazardous Materials, 171, 619–662.

    Article  CAS  Google Scholar 

  • Sitti Fatimah, M. R., Suleiman, O., Hashim, R., Arai, T., Kosugi, A., Abe, H., Murata, Y., & Mori, Y. (2012). Characterization of parenchyma and vascular bundle of oil palm trunk as function of storage time. Lignocellulose, 1, 33–44.

    Google Scholar 

  • Strotmann, U., Thouand, G., Pagga, U., Gartiser, S., & Heipieper, H. J. (2023). Toward the future of OECD/ISO biodegradability testing-new approaches and developments. Applied Microbiology and Biotechnology, 107, 2073–2095.

    Article  CAS  Google Scholar 

  • Xie, X. H., Liu, N., Ping, J., Zhang, Q. Y., Zheng, X. L., & Liu, J. S. (2018). Illumina MiSeq sequencing reveals microbial community in HA process for dyeing wastewater treatment fed with different co-substrates. Chemosphere, 201, 578–585.

    Article  CAS  Google Scholar 

  • Yamamoto, S., & Shigeaki, H. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61, 1104–1109.

    Article  CAS  Google Scholar 

  • Zbytniewski, R., & Buszewski, B. (2005). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: Chemical and spectroscopic properties. Bioresource Technology, 96, 471–478.

    Article  CAS  Google Scholar 

  • Zorpas, A. A., Arapoglou, D., & Panagiotis, K. (2003). Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production. Waste Management, 23, 27–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Ayed.

Ethics declarations

Ethical Approval

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, L., Chakroun, I., Zmantar, T. et al. The Use of Sugarcane Bagasse and Yeast Extract as Agro-Industrial Coproducts for Bioremediation Strategies of Paper Mill Wastewater Using Pseudomonas putida. Water Air Soil Pollut 234, 470 (2023). https://doi.org/10.1007/s11270-023-06501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06501-7

Keywords

Navigation