Skip to main content
Log in

Comparative Genomics Analysis of the Aromatic and Xenobiotic Degradation Capacities and Heavy Metal Resistance in Seven Environmentally Derived Bacterial Isolates

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work is a comparative genomics investigation of the aromatic and xenobiotic compound degradation capabilities and heavy metal resistance of environmental bacterial isolates previously identified by our lab, Achromobacter xylosoxidans ADAF13, Exiguobacterium sp. KKBO11, Ochrobactrum anthropi FRAF13, Pseudomonas putida CBF10-2, Pseudomonas stutzeri ODKF13, Rhizobium radiobacter GHKF11, and Stenotrophomonas maltophilia CBF10-1. This work sought to assess the potential of these isolates as bioremediation tools. We found a variety of aromatic degradation pathways though none directly acts on industrial compounds such as polycyclic aromatic compounds, benzene, phthalate, or xylene. Achromobacter xylosoxidans ADAF13, P. putida CBF10-2, and P. stutzeri ODKF13 showed the most complete pathways for aromatic compound degradation and halobenzoate degradation. All isolates contained heavy metal resistance genes for arsenic, cadmium, copper, chromium, lead, mercury, and zinc. Arsenic resistance genes were the most common among isolates and were organized into structurally diverse ars operons. Collectively, our data indicated that A. xylosoxidans ADAF13, P. putida CBF10-2, and P. stutzeri ODKF13 are strong candidates for further enhancement and development as bioremediation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Code Availability

This work made use of genome sequences already available on NCBI (see text for GenBank accessions). Data that would be necessary to replicate this study (annotations and intermediate files generated by this study) are available in the Zenodo repository under https://doi.org/10.5281/zenodo.7804129. The code used in this study is indicated in the “Methods” section.

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2010). Toxicological profile for Styrene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

  • Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 17006.

    Article  CAS  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

    Article  CAS  Google Scholar 

  • Alves, N. J., Moore, M., Johnson, B. J., Dean, S. N., Turner, K. B., Medintz, I. L., & Walper, S. A. (2018). Environmental decontamination of a chemical warfare simulant utilizing a membrane vesicle-encapsulated phosphotriesterase. ACS Applied Materials & Interfaces, 10(18), 15712–15719.

    Article  CAS  Google Scholar 

  • Anton, A., Große, C., Reißmann, J., Pribyl, T., & Nies, D. H. (1999). CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. Journal of Bacteriology, 181(22), 6876–6881.

    Article  CAS  Google Scholar 

  • Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., & Ogata, H. (2020). KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 36(7), 2251–2252.

    Article  CAS  Google Scholar 

  • Arellano, L., Fernández, P., van Drooge, B. L., Rose, N. L., Nickus, U., Thies, H., . . . Grimalt, J. O. (2018). Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites. Atmospheric Chemistry and Physics, 18(21), 16081–16097.

  • Arias-Barrau, E., Olivera, E. R., Luengo, J. M., Fernández, C., Galán, B., García, J. L., . . . Minambres, B. (2004). The homogentisate pathway: A central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. Journal of Bacteriology, 186(15), 5062–5077.

  • Baggi, G., Boga, M. M., Catelani, D., Galli, E., & Treccani, V. (1983). Styrene catabolism by a strain of Pseudomonas fluorescens. Systematic and Applied Microbiology, 4(1), 141–147.

    Article  CAS  Google Scholar 

  • Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics, 10(8), 484.

    Article  CAS  Google Scholar 

  • Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., . . . Cervantes, C. (2018). Distribution of arsenic resistance genes in prokaryotes. Frontiers in Microbiology, 9, 2473.

  • Boedeker, W., Watts, M., Clausing, P., & Marquez, E. (2020). The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health, 20(1), 1–19.

    Article  Google Scholar 

  • Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., . . . Pusch, G. D. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5(1), 8365.

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    Article  CAS  Google Scholar 

  • Brimblecombe, P. (2005). The globalization of local air pollution. Globalizations, 2(3), 429–441.

    Article  Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.

    Article  CAS  Google Scholar 

  • Cai, A., Zhang, H., Zhao, Y., Wang, X., Wang, L., & Zhao, H. (2022). Quantitative source apportionment of heavy metals in atmospheric deposition of a typical heavily polluted city in Northern China: Comparison of PMF and UNMIX. Frontiers in Environmental Science, 10, 2356.

    Article  Google Scholar 

  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  • Cao, B., Nagarajan, K., & Loh, K.-C. (2009). Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85, 207–228.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Cavet, J. S., Meng, W., Pennella, M. A., Appelhoff, R. J., Giedroc, D. P., & Robinson, N. J. (2002). A nickel-cobalt-sensing ArsR-SmtB family repressor: Contributions of cytosol and effector binding sites to metal selectivity. Journal of Biological Chemistry, 277(41), 38441–38448.

    Article  CAS  Google Scholar 

  • Chaparro, J. M., Badri, D. V., Bakker, M. G., Sugiyama, A., Manter, D. K., & Vivanco, J. M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE, 8(2), e55731.

    Article  CAS  Google Scholar 

  • Chen, J., Bhattacharjee, H., & Rosen, B. P. (2015). ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Molecular Microbiology, 96(5), 1042–1052.

    Article  CAS  Google Scholar 

  • Chen, J., Yoshinaga, M., Garbinski, L. D., & Rosen, B. P. (2016). Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Molecular Microbiology, 100(6), 945–953.

    Article  CAS  Google Scholar 

  • Ciminelli, V. S., Gasparon, M., Ng, J. C., Silva, G. C., & Caldeira, C. L. (2017). Dietary arsenic exposure in Brazil: The contribution of rice and beans. Chemosphere, 168, 996–1003.

    Article  CAS  Google Scholar 

  • Cooper, R. A., & Skinner, M. A. (1980). Catabolism of 3-and 4-hydroxyphenylacetate by the 3, 4-dihydroxyphenylacetate pathway in Escherichia coli. Journal of Bacteriology, 143(1), 302–306.

    Article  CAS  Google Scholar 

  • Cubadda, F., Ciardullo, S., D’Amato, M., Raggi, A., Aureli, F., & Carcea, M. (2010). Arsenic contamination of the environment−food chain: A survey on wheat as a test plant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet. Journal of Agricultural and Food Chemistry, 58(18), 10176–10183.

    Article  CAS  Google Scholar 

  • Díaz, E., Ferrández, A., Prieto, M. A. A., & García, J. L. (2001). Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews, 65(4), 523–569.

    Article  Google Scholar 

  • Duan, L., Naidu, R., Liu, Y., Palanisami, T., Dong, Z., Mallavarapu, M., & Semple, K. T. (2015). Effect of ageing on benzo[a]pyrene extractability in contrasting soils. Journal of Hazardous Materials, 296, 175–184.

    Article  CAS  Google Scholar 

  • Fan, Y., Chen, S.-J., Li, Q.-Q., Zeng, Y., Yan, X., & Mai, B.-X. (2020). Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field. Environmental Pollution, 263, 114400.

    Article  CAS  Google Scholar 

  • FAO and UNEP. (2021). Global assessment of soil pollution: Summary for policymakers. Rome: FAO and UNEP. http://www.fao.org/documents/card/en/c/cb4827en/

  • Flores-Félix, J. D., Menéndez, E., Peix, A., García-Fraile, P., & Velázquez, E. (2020). History and current taxonomic status of genus Agrobacterium. Systematic and Applied Microbiology, 43(1), 126046.

    Article  Google Scholar 

  • Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E., & McLachlan, J. A. (2007). Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proceedings of the National Academy of Sciences, 104(24), 10282–10287.

    Article  CAS  Google Scholar 

  • Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  Google Scholar 

  • Fuenmayor, S. L., Wild, M., Boyes, A. L., & Williams, P. A. (1998). A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Journal of Bacteriology, 180(9), 2522–2530.

    Article  CAS  Google Scholar 

  • Gocht, T., Klemm, O., & Grathwohl, P. (2007). Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in rural areas of Southern Germany. Atmospheric Environment, 41(6), 1315–1327.

    Article  CAS  Google Scholar 

  • Golub, M. S., Macintosh, M. S., & Baumrind, N. (1998). Developmental and reproductive toxicity of inorganic arsenic: Animal studies and human concerns. Journal of Toxicology and Environmental Health, Part B Critical Reviews, 1(3), 199–237.

    Article  CAS  Google Scholar 

  • González Henao, S., & Ghneim-Herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science, 9, 604216. https://doi.org/10.3389/fenvs.2021.604216

  • Goswami, P., Wickrama-Arachchige, A.U.-K., Yamada, M., Ohura, T., & Guruge, K. S. (2022). Presence of halogenated polycyclic aromatic hydrocarbons in milk powder and the consequence to human health. Toxics, 10(10), 621.

    Article  CAS  Google Scholar 

  • Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., & Donley, N. (2021). Pesticides and soil invertebrates: A hazard assessment. Frontiers in Environmental Science, 9, 643847. https://doi.org/10.3389/fenvs.2021.643847

  • Haddad, S., Eby, D. M., & Neidle, E. L. (2001). Cloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070. Applied and Environmental Microbiology, 67(6), 2507–2514.

    Article  CAS  Google Scholar 

  • Haddad, M., Nassar, D., & Shtaya, M. (2023). Heavy metals accumulation in soil and uptake by barley (Hordeum vulgare) irrigated with contaminated water. Scientific Reports, 13(1), 4121. https://doi.org/10.1038/s41598-022-18014-0

    Article  CAS  Google Scholar 

  • Harwood, C. S., & Parales, R. E. (1996). The β-ketoadipate pathway and the biology of self-identity. Annual Review of Microbiology, 50(1), 553–590.

    Article  CAS  Google Scholar 

  • Heid, S. E., Walker, M. K., & Swanson, H. I. (2001). Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicological Sciences, 61(1), 187–196.

    Article  CAS  Google Scholar 

  • Hickey, W., & Sabat, G. (2001). Integration of matrix-assisted laser desorption ionization–time of flight mass spectrometry and molecular cloning for the identification and functional characterization of mobile ortho-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2. Applied and Environment Microbiology, 67(12), 5648–5655.

    Article  CAS  Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  Google Scholar 

  • Huq, S. I., Joardar, J., Parvin, S., Correll, R., & Naidu, R. (2006). Arsenic contamination in food-chain: Transfer of arsenic into food materials through groundwater irrigation. Journal of Health, Population, and Nutrition, 24(3), 305.

    Google Scholar 

  • Inkscape. (2022). https://inkscape.org

  • Islam, K., Wang, Q. Q., & Naranmandura, H. (2015). Molecular mechanisms of arsenic toxicity. In J. C. Fishbein & J. M. Heilman (Eds.), Advances in Molecular Toxicology (Vol. 9, pp. 77–107). Elsevier.

  • Islam, N., & Iyer, R. (2021). Functional analysis of chlorpyrifos biodegradation in agricultural soils augmented with a three-strain bacterial consortium. Water, Air, & Soil Pollution, 232, 1–11.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016a). Draft genome sequence of Exiguobacterium sp. KKBO11, isolated downstream of a wastewater treatment plant in Houston, Texas. Genome Announcements, 4(4), e00681-00616.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016c). Draft genome sequence of Pseudomonas putida CBF10-2, a soil isolate with bioremediation potential in agricultural and industrial environmental settings. Genome Announcements, 4(4), e00670-e616.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016d). Draft genome sequence of the broad-spectrum xenobiotic degrader Achromobacter xylosoxidans ADAF13. Genome Announcements, 4(2), e00203-00216.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016e). Draft genome sequence of Pseudomonas stutzeri ODKF13, isolated from farmland soil in Alvin, Texas. Genome Announcements, 4(2), e00293-e216.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016f). Draft genome sequence of Rhizobium sp. GHKF11, isolated from farmland soil in pecan grove, Texas. Genome Announcements, 4(4), e00682-00616.

    Article  Google Scholar 

  • Iyer, R., & Damania, A. (2016g). Draft genome sequence of Stenotrophomonas maltophilia CBF10-1, an organophosphate-degrading bacterium isolated from ranch soil in Fairchilds, Texas. Genome Announcements, 4(3), e00378-e316.

    Article  Google Scholar 

  • Iyer, R., Iken, B., & Leon, A. (2016). Characterization and comparison of putative Stenotrophomonas maltophilia methyl parathion hydrolases. Bioremediation Journal, 20(1), 71–79.

    Article  CAS  Google Scholar 

  • Iyer, R., Iken, B., Damania, A., & Krieger, J. (2018). Whole genome analysis of six organophosphate-degrading rhizobacteria reveals putative agrochemical degradation enzymes with broad substrate specificity. Environmental Science and Pollution Research International, 25(14), 13660–13675. https://doi.org/10.1007/s11356-018-1435-2

    Article  CAS  Google Scholar 

  • Iyer, R., & Damania, A. (2016b). Draft genome sequence of organophosphate-degrading Ochrobactrum anthropi FRAF13. Genome Announcements, 4(2). https://doi.org/10.1128/genomeA.00295-16

  • Iyer, R., & Iken, B. (2013). Identification of water-borne bacterial isolates for potential remediation of organophosphate contamination. Advances in Biological Chemistry, 3(1), 146–152.

    Article  CAS  Google Scholar 

  • Jencova, V., Strnad, H., Chodora, Z., Ulbrich, P., Hickey, W., & Paces, V. (2004). Chlorocatechol catabolic enzymes from Achromobacter xylosoxidans A8. International Biodeterioration & Biodegradation, 54(2–3), 175–181.

    Article  CAS  Google Scholar 

  • Jeschke, P. (2017). Latest generation of halogen-containing pesticides. Pest Management Science, 73(6), 1053–1066.

    Article  CAS  Google Scholar 

  • Jeschke, P. (2022). Manufacturing approaches of new halogenated agrochemicals. European Journal of Organic Chemistry, 2022(12), e202101513.

    CAS  Google Scholar 

  • Ji, G., & Silver, S. (1992). Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. Journal of Bacteriology, 174(11), 3684–3694.

    Article  CAS  Google Scholar 

  • Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: A better web interface. Nucleic Acids Research, 36(Web Server issue), W5-9. https://doi.org/10.1093/nar/gkn201

    Article  CAS  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  Google Scholar 

  • Kanehisa, M., & Sato, Y. (2020). KEGG mapper for inferring cellular functions from protein sequences. Protein Science, 29(1), 28–35.

    Article  CAS  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  Google Scholar 

  • Kaur, S., Kumar, V., Chawla, M., Cavallo, L., Poater, A., & Upadhyay, N. (2017). Pesticides curbing soil fertility: Effect of complexation of free metal ions. Frontiers in Chemistry, 5, 43.

    Article  Google Scholar 

  • Lampis, S., Santi, C., Ciurli, A., Andreolli, M., & Vallini, G. (2015). Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Frontiers in Plant Science, 6, 80.

    Article  Google Scholar 

  • Lessner, D. J., Johnson, G. R., Parales, R. E., Spain, J. C., & Gibson, D. T. (2002). Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Applied and Environmental Microbiology, 68(2), 634–641.

    Article  CAS  Google Scholar 

  • Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296.

    Article  CAS  Google Scholar 

  • Li, H., Cong, Y., Lin, J., & Chang, Y. (2015). Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. Journal of Basic Microbiology, 55(3), 398–405.

    Article  CAS  Google Scholar 

  • Li, J., Wang, C., Liang, W., & Liu, S. (2021). Rhizosphere microbiome: The emerging barrier in plant-pathogen interactions. Frontiers in Microbiology, 12, 772420.

    Article  Google Scholar 

  • Li, N., Peng, Q., Yao, L., He, Q., Qiu, J., Cao, H., . . . Hui, F. (2020). Roles of the gentisate 1,2-dioxygenases DsmD and GtdA in the catabolism of the herbicide dicamba in Rhizorhabdus dicambivorans Ndbn-20. Journal of Agricultural and Food Chemistry, 68(35), 9287–9298.

  • Lobb, B., Tremblay, B. J.-M., Moreno-Hagelsieb, G., & Doxey, A. C. (2020). An assessment of genome annotation coverage across the bacterial tree of life. Microbial Genomics, 6(3), e000341.

  • Lu, C., Yang, Z., Liu, J., Liao, Q., Ling, W., Waigi, M. G., & Odinga, E. S. (2020). Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501. Chemosphere, 256, 127098.

    Article  CAS  Google Scholar 

  • Luo, L., Zhang, S., & Ma, Y. (2008). Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere, 72(6), 891–896.

    Article  CAS  Google Scholar 

  • Ma, Y., Lin, J., Zhang, C., Ren, Y., & Lin, J. (2011). Cd (II) and As (III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. Journal of Hazardous Materials, 185(2–3), 1605–1608.

    Article  CAS  Google Scholar 

  • Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science, 5(1), 1–11.

    Article  CAS  Google Scholar 

  • Mathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment–A review. Ecotoxicology and Environmental Safety, 226, 112863.

    Article  CAS  Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., . . . Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097–1100. https://doi.org/10.1126/science.1203980

  • Mesa, V., Navazas, A., González-Gil, R., González, A., Weyens, N., Lauga, B., . . . Peláez, A. I. (2017). Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied and Environmental Microbiology, 83(8), e03411–03416.

  • Migliore, L., Naccarati, A., Coppedè, F., Bergamaschi, E., De Palma, G., Voho, A., . . . Norppa, H. (2006). Cytogenetic biomarkers, urinary metabolites and metabolic gene polymorphisms in workers exposed to styrene. Pharmacogenetics and Genomics, 16(2), 87–99.

  • Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  Google Scholar 

  • Mohapatra, B., & Phale, P. S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, 9, 602445.

    Article  Google Scholar 

  • Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70(9), 1596–1602.

    Article  CAS  Google Scholar 

  • Narayanan, M., Ali, S. S., & El-Sheekh, M. (2023). A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. Journal of Environmental Management, 334, 117532.

    Article  CAS  Google Scholar 

  • Neidle, E. L., Hartnett, C., Ornston, L. N., Bairoch, A., Rekik, M., & Harayama, S. (1991). Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1, 2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. Journal of Bacteriology, 173(17), 5385–5395.

    Article  CAS  Google Scholar 

  • Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339.

    Article  CAS  Google Scholar 

  • NTP. (2021). Report on Carcinogens, Fifteenth Edition: Styrene. Atlanta, GA.

  • Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., . . . Stevens, R. L. (2023). Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Research, 51(D1), D678-d689. https://doi.org/10.1093/nar/gkac1003

  • Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. J. (2014). BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1), D737–D743.

    Article  CAS  Google Scholar 

  • Pal, A., Bhattacharjee, S., Saha, J., Sarkar, M., & Mandal, P. (2022). Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Critical Reviews in Microbiology, 48(3), 327–355.

    Article  CAS  Google Scholar 

  • Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980–989. https://doi.org/10.1038/ismej.2014.196

    Article  CAS  Google Scholar 

  • Phale, P. S., Malhotra, H., & Shah, B. A. (2020). Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. Advances in Applied Microbiology, 112, 1–65.

    Article  CAS  Google Scholar 

  • Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7, 229–252.

    Article  Google Scholar 

  • Pimviriyakul, P., Wongnate, T., Tinikul, R., & Chaiyen, P. (2020). Microbial degradation of halogenated aromatics: Molecular mechanisms and enzymatic reactions. Microbial Biotechnology, 13(1), 67–86.

    Article  Google Scholar 

  • Power, A. L., Tennant, R. K., Jones, R. T., Tang, Y., Du, J., Worsley, A. T., & Love, J. (2018). Monitoring impacts of urbanisation and industrialisation on air quality in the Anthropocene using urban pond sediments. Frontiers in Earth Science, 6, 131.

    Article  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2009). Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, 24(7), 1147–1167.

    Article  CAS  Google Scholar 

  • Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189.

    Article  CAS  Google Scholar 

  • Roper, D., Fawcett, T., & Cooper, R. (1993). The Escherichia coli C homoprotocatechuate degradative operon: Hpc gene order, direction of transcription and control of expression. Molecular and General Genetics MGG, 237, 241–250.

    Article  CAS  Google Scholar 

  • Rosenberg, H., Gerdes, R., & Chegwidden, K. (1977). Two systems for the uptake of phosphate in Escherichia coli. Journal of Bacteriology, 131(2), 505–511.

    Article  CAS  Google Scholar 

  • Roslund, M. I., Grönroos, M., Rantalainen, A.-L., Jumpponen, A., Romantschuk, M., Parajuli, A., . . . Sinkkonen, A. (2018). Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ, 6, e4508.

  • Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G., & Torres, C. (2011). Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnology, 11(1), 1–8.

    Article  Google Scholar 

  • Salkinoja-Salonen, M., Uotila, J., Jokela, J., Laine, M., & Saski, E. (1995). Organic halogens in the environment: Studies of environmental biodegradability and human exposure. Environmental Health Perspectives, 103(suppl 5), 63–69.

    Article  CAS  Google Scholar 

  • Salzberg, S. L. (2019). Next-generation genome annotation: We still struggle to get it right. Genome Biology, 20(1), 1–3.

    Article  Google Scholar 

  • San Francisco, M. J., Tisa, L. S., & Rosen, B. P. (1989). Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Molecular Microbiology, 3(1), 15–21.

    Article  CAS  Google Scholar 

  • Santra, S. C., Samal, A. C., Bhattacharya, P., Banerjee, S., Biswas, A., & Majumdar, J. (2013). Arsenic in foodchain and community health risk: A study in Gangetic West Bengal. Procedia Environmental Sciences, 18, 2–13.

    Article  CAS  Google Scholar 

  • Sato, T., & Kobayashi, Y. (1998). The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. Journal of Bacteriology, 180(7), 1655–1661.

    Article  CAS  Google Scholar 

  • Sauge-Merle, S., Cuiné, S., Carrier, P., Lecomte-Pradines, C., Luu, D.-T., & Peltier, G. (2003). Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Applied and Environment Microbiology, 69(1), 490–494.

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., . . . Parihar, R. D. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1–16.

  • Shin, D., Kim, Y., & Moon, H. S. (2018). Fate and toxicity of spilled chemicals in groundwater and soil environment I: Strong acids. Environmental Health and Toxicology, 33(4), e2018019.

  • Srivastava, V., Sarkar, A., Singh, S., Singh, P., De Araujo, A. S., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64.

    Article  Google Scholar 

  • Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A., & Brezonik, P. L. (1992). Increasing rates of atmospheric mercury deposition in midcontinental North America. Science, 257(5071), 784–787.

    Article  CAS  Google Scholar 

  • Swetha, V. P., & Phale, P. S. (2005). Metabolism of carbaryl via 1, 2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6. Applied and Environmental Microbiology, 71(10), 5951–5956.

    Article  CAS  Google Scholar 

  • Tang, F. H. M., Lenzen, M., McBratney, A., & Maggi, F. (2021). Risk of pesticide pollution at the global scale. Nature Geoscience, 14(4), 206–210. https://doi.org/10.1038/s41561-021-00712-5

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology: volume 3: Environmental toxicology (1st ed., pp. 133–164). Basel: Springer.

  • Thevenon, F., Graham, N. D., Chiaradia, M., Arpagaus, P., Wildi, W., & Poté, J. (2011). Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Science of the Total Environment, 412, 239–247.

    Article  Google Scholar 

  • Tilman, D. (1998). The greening of the green revolution. Nature, 396(6708), 211–212.

    Article  CAS  Google Scholar 

  • Tsoi, T. V., Plotnikova, E. G., Cole, J. R., Guerin, W. F., Bagdasarian, M., & Tiedje, J. M. (1999). Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Applied and Environment Microbiology, 65(5), 2151–2162.

    Article  CAS  Google Scholar 

  • Vickers, A., Sloop, T. C., & Lucier, G. W. (1985). Mechanism of action of toxic halogenated aromatics. Environmental Health Perspectives, 59, 121–128.

    CAS  Google Scholar 

  • Wang, L., Chen, S., Xiao, X., Huang, X., You, D., Zhou, X., & Deng, Z. (2006). arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Applied and Environmental Microbiology, 72(5), 3738–3742.

    Article  CAS  Google Scholar 

  • Wei, Y., & Fu, D. (2005). Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). Journal of Biological Chemistry, 280(40), 33716–33724. https://doi.org/10.1074/jbc.M506107200

    Article  CAS  Google Scholar 

  • Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., & Pywell, R. F. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 7(1), 12459. https://doi.org/10.1038/ncomms12459

    Article  CAS  Google Scholar 

  • Wu, J., & Rosen, B. (1991). The ArsR protein is a trans-acting regulatory protein. Molecular Microbiology, 5(6), 1331–1336.

    Article  CAS  Google Scholar 

  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., . . . Cao, Y. (2021). Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution, 278, 116911.

  • Xiao, X., Zhang, J., Wang, H., Han, X., Ma, J., Ma, Y., & Luan, H. (2020). Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment, 713, 135292.

    Article  CAS  Google Scholar 

  • Xie, J., Tao, L., Wu, Q., Lei, S., & Lin, T. (2021). Environmental profile, distributions and potential sources of halogenated polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 419, 126164.

    Article  CAS  Google Scholar 

  • Yan, G., Chen, X., Du, S., Deng, Z., Wang, L., & Chen, S. (2019). Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Current Genetics, 65, 329–338.

    Article  CAS  Google Scholar 

  • Yang, Y., Tao, S., Zhang, N., Zhang, D., & Li, X. (2010). The effect of soil organic matter on fate of polycyclic aromatic hydrocarbons in soil: A microcosm study. Environmental Pollution, 158(5), 1768–1774.

    Article  CAS  Google Scholar 

  • Yoon, K., Misra, T., & Silver, S. (1991). Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. Journal of Bacteriology, 173(23), 7643–7649.

    Article  CAS  Google Scholar 

  • Young, J., Kuykendall, L., Martinez-Romero, E., Kerr, A., & Sawada, H. (2001). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, 51(1), 89–103.

    Article  CAS  Google Scholar 

  • Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., Da Rocha, U. N., Shi, S., . . . Bowen, B. P. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470–480.

  • Zhang, C., Wu, D., & Ren, H. (2020). Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Scientific Reports, 10(1), 9188. https://doi.org/10.1038/s41598-020-66169-5

    Article  CAS  Google Scholar 

  • Zhang, S., Yao, H., Lu, Y., Yu, X., Wang, J., Sun, S., . . . Zhang, D. (2017). Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports, 7(1), 12165.

  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925.

    Article  Google Scholar 

  • Zhu, S., Wang, H., Jiang, W., Yang, Z., Zhou, Y., He, J., . . . Hong, Q. (2019). Genome analysis of carbaryl-degrading strain Pseudomonas putida XWY-1. Current Microbiology, 76, 927–929.

Download references

Acknowledgements

The authors would like to the thank Brian N. Iken for his help drafting the manuscript.

Funding

This work was supported by the National Institute of Standards and Technology (NIST) (G110008 58106) and by the National Science Foundation (NSF) (award no. 1726968).

Author information

Authors and Affiliations

Authors

Contributions

RI was the principal investigator of this research, acquired the funding, submitted compiled sequence data to NCBI for annotation, and supplied the sequence data for analysis. ARK carried out the annotation and comparative genomics analyses and wrote the manuscript. Both authors read and approved the final text.

Corresponding author

Correspondence to Rupa Iyer.

Ethics declarations

Conflict of Interest

ARK was employed as an independent contractor to conduct the analysis and write the manuscript. RI declares no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Supplementary file2 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kneubehl, A.R., Iyer, R. Comparative Genomics Analysis of the Aromatic and Xenobiotic Degradation Capacities and Heavy Metal Resistance in Seven Environmentally Derived Bacterial Isolates. Water Air Soil Pollut 234, 482 (2023). https://doi.org/10.1007/s11270-023-06495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06495-2

Keywords

Navigation