Skip to main content
Log in

Modern Advancement in Biotechnological Applications for Wastewater Treatment through Microalgae: a Review

Water, Air, & Soil Pollution Aims and scope Submit manuscript

Cite this article

Abstract

Microalgae are microscopic organisms that have a broad range of applications, from wastewater treatment, CO2 mitigation to therapeutic proteins, and pharmaceuticals. Recently, the combination of wastewater treatment-based microalgae and the use of the obtained biomass as biofertilizers/stimulants/pesticides have been highly emphasized for their use in the agriculture field. Biofertilizers are a need of today’s agriculture practices due to the increasing demand for food to feed a hungry planet while avoiding chemical contamination by the over-application of synthetic fertilizers. There is a constant need for modern techniques for the use of microalgae in a sustainable manner to harness their products to their full extent. Various types of bioreactors are available on the market, each with its own advantages and disadvantages, which, based on their efficiency, can be used for microalgae cultivation. This review aims at reporting recent developments in microalgae biotechnology, especially related to CO2 mitigation, wastewater purification, biofuel, feedstock, future food, therapeutic proteins, pharmaceuticals, and biofertilizers, highlighting some of the current research in this field and future development priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  • Abdl el Moniem, E. A., Abd-Allah, A. S. E., & Ahmed, M. A. (2008). The combined effect of some organic manures, mineral N fertilizers and algal cells extract on yield and fruit quality of Williams banana plants. American-Eurasian Journal of Agricultural & Environmental Sciences, 4, 417–426.

    Google Scholar 

  • Abolhasani, M. H., Safavi, M., Goodarzi, M. T., &, et al. (2018). Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486. DARU Journal of Pharmaceutical Sciences, 26, 105–116. https://doi.org/10.1007/s40199-018-0213-5

    Article  CAS  Google Scholar 

  • Acién Fernández, F. G., Gómez-Serrano, C., & Fernández-Sevilla, J. M. (2018). Recovery of nutrients from wastewaters using microalgae. Frontiers in Sustainable Food Systems, 2, 1–13. https://doi.org/10.3389/fsufs.2018.00059

    Article  Google Scholar 

  • Agarwal, P., Gupta, R., & Gill, I. K. (2018). Importance of biofertilizers in agriculture biotechnology are human beings at risk for COVID-19 contamination with type 2 diabetes? View project importance of biofertilizers in agriculture biotechnology. Annals of Biological Research, 9, 1–3.

    CAS  Google Scholar 

  • Ahmad, G., Khan, A. A., & Mohamed, H. I. (2021). Impact of the low and high concentrations of fly ash amended soil on growth, physiological response, and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environmental Science Pollution Research, 28, 17068–17083. https://doi.org/10.1007/s11356-020-12029-8

    Article  CAS  Google Scholar 

  • Aiyer, R. S., Salahudeen, S., & Venkataraman, G. S. (1972). Long-term algalization field trial with high-yielding varieties of rice (Oryza sativa L.). Indian Journal of Agricultural Sciences, 42, 380–383.

    Google Scholar 

  • Aketo, T., Hoshikawa, Y., Nojima, D., Yabu, Y., Maeda, Y., Yoshino, T., et al. (2020). Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Journal of Bioscience and Bioengineering, 129(5), 565–572. https://doi.org/10.1016/j.jbiosc.2019.12.004

    Article  CAS  Google Scholar 

  • AlishahAratboni, H., Rafiei, N., Garcia-Granados, R., et al. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18, 1–17. https://doi.org/10.1186/s12934-019-1228-4

    Article  CAS  Google Scholar 

  • Ansari, M. S., Tauseef, A., Haris, M., Khan, A., Hussain, T., Khan, AA. (2022). Effects of heavy metals present in sewage sludge, their impact on soil fertility, soil microbial activity, and environment. Development in Waste Water Treatment Research and Processes. Treatment and Reuse of Sewage Sludge: An Innovative Approach for Wastewater Treatment. pp. 197–214. https://doi.org/10.1016/B978-0-323-85584-6.00013-3

  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., & Perales, J. A. (2014). Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Research, 49, 465–474. https://doi.org/10.1016/J.WATRES.2013.10.036

    Article  CAS  Google Scholar 

  • Arora, K., Kaur, P., Kumar, P., Singh, A., Patel, S. K. S., Li, X., Yang, Y. H., Bhatia, S. K., & Kulshrestha, S. (2021). Valorization of wastewater resources into biofuel and value-added products using microalgal system. Frontiers Energy Research, 9, 646571. https://doi.org/10.3389/fenrg.2021.646571

    Article  Google Scholar 

  • Assunção, J., Batista, A. P., Manoel, J., da Silva, T. L., Marques, P., Reis, A., & Gouveia, L. (2017). CO2 utilization in the production of biomass and biocompounds by three different microalgae. Engineering in Life Sciences, 17, 1126–1135.

    Article  Google Scholar 

  • Bafana, A. (2013). Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydrate Polymers, 95(2), 746–752. https://doi.org/10.1016/j.carbpol.2013.02.01610.1002/ELSC.201700075

    Article  CAS  Google Scholar 

  • Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575, 109–118. https://doi.org/10.1038/s41586-019-1679-0

    Article  CAS  Google Scholar 

  • Banerjee, S., Ghosh, D., Pandit, C., Saha, S., Mohapatra, A., Pandit, S., Sharma, M., Sridhar, K., Inbaraj, B. S., & Prasad, R. (2023). Microalgal pandora for potent bioenergy production: A way forward? Fuel, 333, 126253.

    Article  CAS  Google Scholar 

  • Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., Cagnin, M., Pizzeghello, D., Moliterni, V. M. C., Mandolino, G., Fornasier, F., Squartini, A., Nardi, S., & Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal Applied Phycology, 30, 1061–1071. https://doi.org/10.1007/s10811-017-1283-3

    Article  CAS  Google Scholar 

  • Barone, V., Puglisi, I., Fragalà, F., Stevanato, P., & Baglieri, A. (2019). Effect of living cells of microalgae or their extracts on soil enzyme activities. Archives of Agronomy and Soil Science, 65(5), 712–726. https://doi.org/10.1080/03650340.2018.1521513

    Article  CAS  Google Scholar 

  • Basit, A., Shah, S. T., Ullah, I., Muntha, S. T., & Mohamed, H. I. (2021). Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Archives of Microbiology, 203, 5859–5885. https://doi.org/10.1007/s00203-021-02576-0

    Article  CAS  Google Scholar 

  • Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A. S. S., Ribeiro, B., Botrel, E. P., Neto, P. C., & Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production — An integrated microalgae-based approach. Bioresource Technology, 184, 230–235. https://doi.org/10.1016/j.biortech.2014.10.064

    Article  CAS  Google Scholar 

  • Berndt, A. J., Smalley, T. N., Ren, B., Simkovsky, R., Badary, A., Sproles, A. E., Fields, F. J., Torres-Tiji, Y., Heredia, V., & Mayfield, S. P. (2021). Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS One, 16(11), e0257089. https://doi.org/10.1371/journal.pone.0257089

    Article  CAS  Google Scholar 

  • Bhuyar, P., Trejo, M., Dussadee, N., Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology, 84(10–11), 2686–2694. https://doi.org/10.2166/wst.2021.194

    Article  CAS  Google Scholar 

  • Bratchkova, A., & Kroumov, A. D. (2020). Microalgae as producers of biologically active compounds with antibacterial, antiviral, antifungal, antialgal, antiprotozoal, antiparasitic and anticancer activity. Acta Microbiologica Bulgarica, 36, 79–89.

    Google Scholar 

  • Butler, T., Kapoore, R. V., & Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A diatom cell factory. Trends in Biotechnology, 38(6), 606–622. https://doi.org/10.1016/j.tibtech.2019.12.023

    Article  CAS  Google Scholar 

  • Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., & Bengoa, C. (2015). Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research, 10, 232–239. https://doi.org/10.1016/J.ALGAL.2015.05.011

    Article  Google Scholar 

  • Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5. https://doi.org/10.3389/fnut.2018.00058

  • Cardoso, L., Lombardi, A., de Jesus Silva, J., Lemos, P., Costa, J., de Souza, C., Druzian, J., & Chinalia, F. (2020). Scaling-up production of spirulina sp. leb18 grown in aquaculture wastewater. Aquaculture, 544, 737045. https://doi.org/10.1016/j.aquaculture.2021.737045

  • Carvajal-Muñoz, J. S., & Carmona-Garcia, C. E. (2012). Benefits and limitations of biofertilization in agricultural practices. Livestock Research for Rural Development, 24(3), 1–8.

    Google Scholar 

  • Chanakya, H. N., Mahapatra, D. M., Ravi, S., Chauhan, V. S., & Abitha, R. (2012). Sustainability of large-scale algal biofuel production in India. Journal of the Indian Institute of Science, 92(1), 63–98.

    CAS  Google Scholar 

  • Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R., & Rai, L.C. (2017). Algal green chemistry: Recent progress in biotechnology. In: Rastogi, R.P., Madamwar, D., Pandey, A. (Eds.), Algal Green Chemistry. Elsevier, pp. 189–200. https://doi.org/10.1016/B978-0-444-63784-0.00010-2

  • Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. D., Lee, D. J., &, et al. (2020a). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302, 122814. https://doi.org/10.1016/j.biortech.2020.122814

  • Chen, H., Wang, X., & Wang, Q. (2020b). Microalgal biofuels in China: The past, progress and prospects. GCB Bioenergy, 12(12), 1044–1065.

    Article  Google Scholar 

  • Chen, X., Han, W., Wang, G., & Zhao, X. (2020c). Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. International Journal of Biological Macromolecules, 164, 331–343.

    Article  CAS  Google Scholar 

  • Chen, Z., Xiao, J., Liu, H., Yao, K., Hou, X., Cao, Y., et al. (2020d). Astaxanthin attenuates oxidative stress and immune impairment in d-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway. Food & Function, 11(9), 8099–8111.

    Article  CAS  Google Scholar 

  • Cheng, F., & Luo, H. (2022). Evaluating the minimum fuel selling price of algaederived biofuel from hydrothermal liquefaction. Bioresource Technology Reports, 17, 100901. https://doi.org/10.1016/j.biteb.2021.100901

    Article  CAS  Google Scholar 

  • Chia, W. Y., Kok, H., Chew, K. W., Low, S. S., & Show, P. L. (2021). Can algae contribute to the war with COVID-19? Bioengineered, 12(1), 1226–1237.

    Article  CAS  Google Scholar 

  • Chirinos, V., Leal, A. & Montilla, J. (2006). Uso de insumos biológicos como alternativa para la agricultura sostenible en la zona sur del Estado Anzoátegui. CENIAP HOY (Venezuela).

  • Chittora, D., Meena, M., Barupal, T., & Swapnil, P. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22, 100737. https://doi.org/10.1016/J.BBREP.2020.100737

    Article  Google Scholar 

  • Collotta, M., Champagne, P., Mabee, W., & Tomasoni, G. (2018). Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Research, 29, 12–21. https://doi.org/10.1016/J.ALGAL.2017.11.013

    Article  Google Scholar 

  • Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal Applied Phycology, 28, 2367–2377. https://doi.org/10.1007/s10811-015-0775-2

    Article  CAS  Google Scholar 

  • da Rosa, G. M., Moraes, L., Cardias, B. B., de Souza, M. da R. A. Z., & Costa, J. A. V. (2015). Chemical absorption and CO2 biofixation via the cultivation of spirulina in semicontinuous mode with nutrient recycle. Bioresourse Technology, 192, 321–327. https://doi.org/10.1016/J.BIORTECH.2015.05.020

    Article  CAS  Google Scholar 

  • Daoud, H. M., & Soliman, E. M. (2015). Evaluation of Spirulina platensis extract as natural antivirus against foot and mouth disease virus strains (A, O, SAT2). Veterinary World, 8(10), 1260.

    Article  CAS  Google Scholar 

  • Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Chaudhary, A. K., & Al-Jabri, H. (2020). A feasibility study of utilizing hydrothermal liquefaction derived aqueous phase as nutrients for semi-continuous cultivation of Tetraselmis Sp. Bioresource Technology, 295, 122310. https://doi.org/10.1016/j.biortech.2019.122310

    Article  CAS  Google Scholar 

  • Das, P., Khan, S., AbdulQuadir, M., Thaher, M., Waqas, M., Easa, A., et al. (2020). Energy recovery and nutrients recycling from municipal sewage sludge. Science of Total Environment, 715, 136775. https://doi.org/10.1016/j.scitotenv.2020b.136775

    Article  CAS  Google Scholar 

  • Davoodbasha, M., Edachery, B., Nooruddin, T., Lee, S., & Kim, J. W. (2018). An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microbial Pathogenesis, 115, 233–238. https://doi.org/10.1016/j.micpath.2017.12.049

    Article  CAS  Google Scholar 

  • de Grahl, I., & Reumann, S. (2021). Stramenopile microalgae as “green biofactories” for recombinant protein production. World Journal of Microbiology and Biotechnology, 37(9), 1–9. https://doi.org/10.1007/s11274-021-03126-y

    Article  CAS  Google Scholar 

  • De Mandal, S., Sonali, Singh, S., Hussain, K., Hussain, T. (2021). Plant–microbe association for mutual benefits for plant growth and soil health. In: A.N. Yadav, J. Singh, C. Singh, & N. Yadav (Eds.), Current trends in microbial biotechnology for sustainable agriculture. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_5

  • de Medeiros, V. P. B., Pimentel, T. C., Sant’ana, A. S., & Magnani, M. (2021). Microalgae in the meat processing chain: Feed for animal production or source of techno-functional ingredients. Current Opinion in Food Science, 37, 125–134. https://doi.org/10.1016/j.cofs.2020.10.014

    Article  Google Scholar 

  • Demirbas, M. F. (2011). Biofuels from algae for sustainable development. Applied Energy, 88, 3473–3480. https://doi.org/10.1016/J.APENERGY.2011.01.059

    Article  CAS  Google Scholar 

  • Dhanker, R., Hussain, T., Tyagi, P., Singh, K. J., & Kamble, S. S. (2021). The emerging trend of bio-engineering approaches for microbial nanomaterial synthesis and its applications. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.638003

  • Dhanker, R., Kumar, R., Tiwari, A., & Kumar, V. (2022). Diatoms as a biotechnological resource for the sustainable biofuel production: A state-of-the-art review. Biotechnology and Genetic Engineering Reviews, 38(1), 111–131. https://doi.org/10.1080/02648725.2022.2053319

  • Dhanker, R., Singh, P., Sharma, D., Tyagi, P., Kumar, M., Singh, R., & Prakash, S. (2023). Diatom silica a potential tool as biosensors and for biomedical field. Plant Life and Environment Dynamics, 175–193. https://doi.org/10.1007/978-981-19-5920-2_11

  • Dhanker, R., & Tiwari, A. (2021). Bioprocess for algal biofuels production. Clean Energy Production Technologies, 81–94. https://doi.org/10.1007/978-981-15-7070-4_4

  • Dineshkumar, R., Subramanian, J., Arumugam, A., Ahamed Rasheeq, A., & Sampathkumar, P. (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization, 11, 77–87. https://doi.org/10.1007/s12649-018-0466-8

    Article  CAS  Google Scholar 

  • Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M. N. A., & Sampathkumar, P. (2018). Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization, 9, 793–800.

    Article  CAS  Google Scholar 

  • El-Beltagi, H. S., Mohamed, A. A., Mohamed, H. I., Ramadan, K. M. A., Barqawi, A. A., & Mansour, A. T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine Drugs, 20, 342. https://doi.org/10.3390/md20060342

    Article  CAS  Google Scholar 

  • Elhafiz, A. A., Gaur, A. E. S. S., Osman, N. H. M., & Lakshmi, T. R. (2015). Chlorella vulgaris and Chlorella pyrenoidosa cells appear to be promising sustainable to grow rice, lettuce, cucumber and eggplant in the UAE soils. Recent Research in Science and Technology, 7, 14–21.

    Google Scholar 

  • El-Khawaga, A. S. (2013). Effect of anti-salinity agents on growth and fruiting of different date palm cultivars. Asian Journal of Crop Science, 5, 65–80. https://doi.org/10.3923/ajcs.2013.65.80

    Article  Google Scholar 

  • El-Mahdy, O. M., Mohamed, H. I., & Mogazy, A. M. (2021). Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd-and Pb-contaminated soil and their physiological effects on Vicia faba L. Environmental Science and Pollution Research, 28(47), 67608–67631. https://doi.org/10.1007/s11356-021-15382-4

    Article  CAS  Google Scholar 

  • Etesami, H., & Adl, S. M. (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In: Manoj Kumar, Vivek Kumar, Ram Prasad (eds) Phyto-Microbiome in stress regulation (147–203). Springer. https://doi.org/10.1007/978-981-15-2576-6_9.

  • Faheed, F. A., & Fattah, Z. A. E. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Science, 4, 165–169.

    Google Scholar 

  • Ferreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., & Gouveia, L. (2021). Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environmental Advances, 4, 100062. https://doi.org/10.1016/j.envadv.2021.100062

    Article  CAS  Google Scholar 

  • Ferreira, A., Ribeiro, B., Ferreira, A. F., Tavares, M. L. A., Vladic, J., Vidović, S., Cvetkovic, D., Melkonyan, L., Avetisova, G., Goginyan, V., & Gouveia, L. (2019). Scenedesmus obliquus microalga-based biorefinery – from brewery effluent to bioactive compounds, biofuels and biofertilizers – aiming at a circular bioeconomy. Biofuels, Bioproducts and Biorefining, 13, 1169–1186. https://doi.org/10.1002/bbb.2032

    Article  CAS  Google Scholar 

  • Figueroa, J. M., Lombardo, M., Dogliotti, A., Flynn, L., Giugliano, R. P., Simonelli, G., et al. (2021). Efficacy of a nasal spray containing Iota-Carrageenan in the prophylaxis of COVID-19 in hospital personnel dedicated to patients care with COVID-19 disease. International Journal of General Medicine, 14, 6277–6286.

    Article  Google Scholar 

  • Filippino, K. C., Mulholland, M. R., & Bott, C. B. (2015). Phycoremediation strategies for rapid tertiary nutrient removal in a waste stream. Algal Research, 11, 125–133. https://doi.org/10.1016/j.algal.2015.06.011

    Article  Google Scholar 

  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2

    Article  Google Scholar 

  • Gitau, M. M., Farkas, A., Ördög, V., & Maróti, G. (2022). Evaluation of the biostimulant effects of two Chlorophyta microalgae on tomato (Solanum lycopersicum). Journal of Cleaner Production, 364, 132689. https://doi.org/10.1016/j.jclepro.2022.132689

    Article  Google Scholar 

  • Guleri, S., Singh, K., Kaushik, R., Dhankar, R., & Tiwari, A. (2020). Phycoremediation: A novel and synergistic approach in wastewater remediation. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 98–106. https://doi.org/10.15414/jmbfs.2020.10.1.98-106

  • Gunasekaran, B., & Gothandam, K. M. (2020). A review on edible vaccines and their prospects. Brazilian Journal of Medical and Biological Research, 53(2), 1–10.

    Article  Google Scholar 

  • Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., et al. (2021). Cultivation of microalgae for lipid production using municipal wastewater. Process Safety and Environmental Protection, 155, 155–165. https://doi.org/10.1016/j.psep.2021.09.014

    Article  CAS  Google Scholar 

  • Haris, M., Hussain, T., Mohamed, H. I., Khan, A., Ansari, M. S., Tauseef, A., & Akhtar, N. (2022). Nanotechnology–a new frontier of nano-farming in agricultural and food production and its development. Science of The Total Environment, 857, 159639. https://doi.org/10.1016/j.scitotenv.2022.159639

  • Haris, M., Hussain, T., Tauseef, A., Khan, A., Khan, A. A., & Yasheshwar. (2023). Application of microbial inoculants as an alternative to chemical products for decomposition of organic wastes. Microbial Inoculants, Recent Progress and Applications Developments in Applied Microbiology and Biotechnology. pp. 29-52. https://doi.org/10.1016/B978-0-323-99043-1.00006-2

  • Hassan, S., Meenatchi, R., Pachillu, K., Bansal, S., Brindangnanam, P., Arockiaraj, J., et al. (2022). Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. Journal of Basic Microbiology, 62, 999–1029. https://doi.org/10.1002/jobm.202100477

    Article  Google Scholar 

  • Hegde, D., Dwivedi, B. S., & Babu, S. (1999). Biofertilizers for cereal production in India: A review. Indian Journal Agriculture Science, 69, 73–83.

    Google Scholar 

  • Hena, S., Znad, H., Heong, K. T., & Judd, S. (2018). Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 128, 267–277.

    Article  CAS  Google Scholar 

  • Iravani, S., & Varma, R. S. (2021). Important roles of oligo-and polysaccharides against SARS-CoV-2: Recent advances. Applied Sciences, 11(8), 3512.

    Article  CAS  Google Scholar 

  • Jha, Y., & Mohamed, H. I. (2023). Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanzen, 75, 77–95. https://doi.org/10.1007/s10343-022-00666-7

    Article  CAS  Google Scholar 

  • Jhala, Y.K., Panpatte, D.G., & Vyas, R. V. (2017). Cyanobacteria: Source of organic fertilizers for plant growth. In: D. G. Panpatte, Y. K. Jhala, R. V. Vyas, H. N. Shelat (eds) Microorganisms for Green Revolution (pp. 253–264). Springer. https://doi.org/10.1007/978-981-10-6241-4_13.

  • Kamrul Hasan, M., Tanaka, T. T. S., MonjurulAlam, M., Rostom Ali, M., & KumerSaha, C. (2020). Reviews open access impact of modern rice harvesting practices over traditional ones. Reviews in Agricultral Science, 8, 89–108. https://doi.org/10.7831/ras.8.0_89

    Article  Google Scholar 

  • Kang, Y., Kim, M., Shim, C., Bae, S., & Jang, S. (2021). Potential of algae–bacteria synergistic effects on vegetable production. Frontiers in Plant Science, 12, 556. https://doi.org/10.3389/fpls.2021.656662

    Article  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Nain, L., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30. https://doi.org/10.1016/j.ejsobi.2006.11.001

    Article  CAS  Google Scholar 

  • Kaur, R., Wani, S.P., Singh, A.K. & Lal, K. (2012). May. Wastewater production, treatment and use in India. In National Report presented at the 2nd regional workshop on Safe Use of Wastewater in Agriculture (pp. 1–13).

  • Khaligh, S. F., & Asoodeh, A. (2022). Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech, 12, 260. https://doi.org/10.1007/s13205-022-03327-8

    Article  Google Scholar 

  • Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A., & Rashmi, G. N. (2019). Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. Journal Cleanear Production, 211, 1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.281

    Article  CAS  Google Scholar 

  • Khavari, F., Saidijam, M., Taheri, M., et al. (2021). Microalgae: Therapeutic potentials and applications. Molecular Biology Reports, 48(5), 4757–4765. https://doi.org/10.1007/s11033-021-06422-w

    Article  CAS  Google Scholar 

  • Khoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., &, et al. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606. https://doi.org/10.1016/j.biortech.2019.121606

    Article  CAS  Google Scholar 

  • Kim, M. J., Shim, C. K., Ko, B. G., & Kim, J. (2020). Effect of the microalga Chlorella fusca CHK0059 on strawberry PGPR and biological control of fusarium wilt disease in non-pesticide hydroponic strawberry cultivation. Journal Microbiology Biotechnology, 30, 708–716. https://doi.org/10.4014/jmb.2001.01015

    Article  CAS  Google Scholar 

  • Kiran, B. R., & Venkata Mohan, S. (2021). Microalgal cell biofactory-therapeutic, nutraceutical and functional food applications. Plants (basel, Switzerland), 10(5), 836. https://doi.org/10.3390/plants10050836

    Article  CAS  Google Scholar 

  • Ko, S. C., Kang, N., Kim, E. A., Kang, M. C., Lee, S. H., Kang, S. M., &, et al. (2012). A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochemistry, 47(12), 2005–2011. https://doi.org/10.1016/j.procbio.2012.07.015

    Article  CAS  Google Scholar 

  • Kristiansen, P., Taji, A., & Reganold, J. (2006). Organic agriculture: Opportunities and challenges. In: P. Kristiansen, A. Taji, J. Reganold (Eds.), Organic agriculture: a global perspective (pp. 421–441). CABI https://doi.org/10.1079/9781845931698.0421.

  • Kumar, A., Chaurasia, U., Elshobary, M. E., Kumari, S., Hussain, T., Bharti, A. P., Maurya, D. K., Samanta, L., & El-Sheekh, M. (2022). Utilization of algae in crop improvement and crop protection for a better agricultural system. In: M. El-Sheekh, N. Abdullah, & I. Ahmad (Eds.), Handbook of research on algae as a sustainable solution for food, energy, and the environment (pp. 442-470). IGI Global. https://doi.org/10.4018/978-1-6684-2438-4.ch018

  • Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., & Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere, 271, 129800. https://doi.org/10.1016/j.chemosphere.2021.129800

    Article  CAS  Google Scholar 

  • Liber, J. A., Bryson, A. E., Bonito, G., & Du, Z. Y. (2020). Harvesting microalgae for food and energy products. Small Methods, 4(10), 2000349. https://doi.org/10.1002/smtd.202000349

    Article  CAS  Google Scholar 

  • Liu, Y., & Yildiz, I. (2018). The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. International Journal of Energy Research, 42, 2997–3006. https://doi.org/10.1002/er.3967

    Article  CAS  Google Scholar 

  • Lopéz, E., Ruiz, N. A., Ferreira, A., Acién, F. G., & Gouveia, L. (2020). Biostimulant potential of Scenedesmus obliquus grown in brewery wastewater. Molecules, 25, 664–669.

    Article  Google Scholar 

  • Lucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal proteins and bioactives for food, feed, and other applications. Applied Sciences, 12(9), 4402. https://doi.org/10.3390/app12094402

  • Lv, J., Feng, J., Liu, Q., & Xie, S. (2017). Microalgal cultivation in secondary effluent: Recent developments and future work. International Journal Molecular Science, 18, 79. https://doi.org/10.3390/ijms18010079

    Article  CAS  Google Scholar 

  • Mahanty, T., Bhattacharjee, S., & Goswami, M. (2017). Biofertilizers: A potential approach for sustainable agriculture development. Environmental Science Pollutation Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0

    Article  CAS  Google Scholar 

  • Maher, S., Kumeria, T., Aw, M. S., & Losic, D. (2018). Diatom silica for biomedical applications: Recent progress and advances. Advanced Healthcare Materials, 7(19), 1800552. https://doi/abs/https://doi.org/10.1002/adhm.201800552

  • Maia, J. L. D., Cardoso, J. S., Mastrantonio, D. J. D. S., Bierhals, C. K., Moreira, J. B., Costa, J. A. V., et al. (2020). Microalgae starch: A promising raw material for the bioethanol production. International Journal Biological Macromolecules, 165(2), 2739–2749. https://doi.org/10.1016/j.ijbiomac.2020.10.159

    Article  CAS  Google Scholar 

  • Mathew, M. M., Khatana, K., Vats, V., Dhanker, R., Kumar, R., Dahms, H.-U., & Hwang, J.-S. (2022). Biological approaches integrating algae and bacteria for the degradation of wastewater contaminants—a review. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.801051

  • Michalak, I., Chojnacka, K., Dmytryk, A., Wilk, R., Gramza, M., & Rój, E. (2016). Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Frontiers Plant Science, 7, 1–11. https://doi.org/10.3389/fpls.2016.01591

    Article  Google Scholar 

  • Mógor, Á. F., Ördög, V., Lima, G. P. P., Molnár, Z., & Mógor, G. (2018). Biostimulant properties of cyanobacterial hydrolysate related to polyamines. Journal Applied Phycology, 30, 453–460. https://doi.org/10.1007/s10811-017-1242-z

    Article  CAS  Google Scholar 

  • Moore, A. W. (1969). Azolla: Biology and agronomic significance. Botanical Review, 35, 17–34. https://doi.org/10.1007/BF02859886

    Article  CAS  Google Scholar 

  • Moaveni, S., Salami, M., Khodadadi, M., McDougall, M., & Emam- Djomeh, Z. (2022). Investigation of S. limacinum microalgae digestibility and production of antioxidant bioactive peptides. LWT, 154, 112468. doi:https://doi.org/10.1016/j.lwt.2021.112468.

  • Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., Das, P., &, et al. (2017). Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech., 7(2), 99. https://doi.org/10.1007/s13205-017-0727-4

    Article  Google Scholar 

  • Mu, N., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Comprehensive Eeviews in Food Science and Food Safety, 18(6), 1882–1897. https://doi.org/10.1111/1541-4337.12500

    Article  CAS  Google Scholar 

  • Mukherjee, S., Pandey, V., Parvez, A., Qi, X., Hussain, T. (2022). Bacillus as a versatile tool for Crop improvement and agro-industry. In: M. T. Islam, M. Rahman, P. Pandey (Eds.), Bacilli in agrobiotechnology. Bacilli in climate resilient agriculture and bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_19

  • Mutale-joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & Hicham, E. (2020). Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Report, 10, 2820. https://doi.org/10.1038/s41598-020-59840-4

    Article  CAS  Google Scholar 

  • Navarro-López, Elvira, Cerón-García, M. del C., López-Rodríguez, M., Acién-Fernández, F.G., & Molina-Grima, E. (2020a). Biostimulants obtained after pilot-scale high-pressure homogenization of Scenedesmus sp. grown in pig manure. Algal Research, 52, 102123. https://doi.org/10.1016/j.algal.2020.102123.

  • Navarro-López, E., Ruíz-Nieto, A., Ferreira, A., Gabriel Acién, F., & Gouveia, L. (2020). Biostimulant potential of Scenedesmus obliquus grown in brewery wastewater. Molecules, 25(3), 664. https://doi.org/10.3390/molecules25030664

    Article  CAS  Google Scholar 

  • Ngatu, N. R., Okajima, M. K., Yokogawa, M., Hirota, R., Eitoku, M., Muzembo, B. A., &, et al. (2012). Anti-inflammatory effects of sacran, a novel polysaccharide from Aphanothece sacrum, on 2, 4, 6-trinitrochlorobenzene–induced allergic dermatitis in vivo. Annals of Allergy, Asthma & Immunology, 108(2), 117-122.e2. https://doi.org/10.1016/j.anai.2011.10.013

    Article  CAS  Google Scholar 

  • Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., Castañeda-Antonio, M., Coronado-Apodaca, K. G., Gomes Araújo, R., Sosa-Hernández, J. E., & Melchor-Martínez, E. M. (2023). Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093

    Article  CAS  Google Scholar 

  • Paddock, M. B., Fernández-Bayo, J. D., & VanderGheynst, J. S. (2020). The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production. Applied Microbiology and Biotechnology, 104(2), 893–905. https://doi.org/10.1007/s00253-019-10246-x

    Article  CAS  Google Scholar 

  • Pancha, I., Chokshi, K., & Mishra, S. (2019). Industrial wastewater-based microalgal biorefinery: A dual strategy to remediate waste and produce microalgal bioproducts. In S. Gupta & F. Bux (Eds.), Application of Microalgae in Wastewater Treatment (pp. 173–193). Springer.

    Chapter  Google Scholar 

  • Park, Y. J., Park, J. E., Truong, T. Q., Koo, S. Y., Choi, J. H., & Kim, S. M. (2022). Effect of Chlorella vulgaris on the growth and phytochemical contents of “Red Russian” kale (Brassica napus var. Pabularia). Agronomy, 12, 2138. https://doi.org/10.3390/agronomy12092138

    Article  CAS  Google Scholar 

  • Patra, B., & Singh, J. (2019). A review: Usage of biofertilizer in cereal crops. Current Journal of Applied Science and Technology, 36, 1–8. https://doi.org/10.9734/cjast/2019/v36i330233

    Article  CAS  Google Scholar 

  • Plaza, B. M., Gómez-Serrano, C., Acién-Fernández, F. G., & Jimenez-Becker, S. (2018). Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal Applied Phycology, 30, 2359–2365. https://doi.org/10.1007/s10811-018-1427-0

    Article  CAS  Google Scholar 

  • Prabakaran, G., Sampathkumar, P., Kavisri, M., & Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules, 153, 256–263. https://doi.org/10.1016/j.ijbiomac.2020.03.009

    Article  CAS  Google Scholar 

  • Prasad, R. C., & Prasad, B. N. (2001). Cyanobacteria as a source biofertilizer for sustainable agriculture in Nepal. Journal Plant Science Botany Orientalis, 1, 127–133.

    Google Scholar 

  • Qamar, H., Hussain, K., Soni, A., Khan, A., Hussain, T., Chénais, B. (2021). Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 26(1), 247. https://doi.org/10.3390/molecules26010247

  • Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426

    Article  Google Scholar 

  • Ramos-Vega, A., Angulo, C., Bañuelos-Hernández, B., & Monreal-Escalante, E. (2021). Microalgae-made vaccines against infectious diseases. Algal Research, 58, 102408. https://doi.org/10.1016/j.algal.2021.102408

    Article  Google Scholar 

  • Rasoul-Amini, S., Montazeri-Najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., Mobasher, M. A., & Ghasemi, Y. (2014). Removal of nitrogen and phosphorus fromwastewater using microalgae free cells in bath culture system. Biocatalysis Agricultural Biotechnology, 3, 126–131. https://doi.org/10.1016/j.bcab.2013.09.003

    Article  Google Scholar 

  • Rather, A. H., Singh, S., & Choudhary, S. (2021). Antibacterial activity of Haematococcus pluvialis crude astaxanthin extract. Journal of Drug Delivery and Therapeutics, 11(2-S), 28–30. https://doi.org/10.22270/jddt.v11i2-S.4662

  • Renuka, N., Sood, A., Ratha, S. K., Prasanna, R., & Ahluwalia, A. S. (2013). Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water. International Journal Phytoremediation, 15, 789–800. https://doi.org/10.1080/15226514.2012.736436

    Article  CAS  Google Scholar 

  • Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192

    Article  CAS  Google Scholar 

  • Rosenberg, J. N., Oyler, G. A., Wilkinson, L., & Betenbaugh, M. J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19, 430–436. https://doi.org/10.1016/J.COPBIO.2008.07.008

    Article  CAS  Google Scholar 

  • Rosic, N. N. (2019). Mycosporine-like amino acids: Making the foundation for organic personalised sunscreens. Marine Drugs, 17(11), 638. https://doi.org/10.3390/md17110638

    Article  CAS  Google Scholar 

  • Sahin, D. (2021). Effect of oil extract from microalgae (Schizochytrium sp.) on the viability and apoptosis of human osteosarcoma cells. Current Pharmaceutical Biotechnology, 22(8), 1099–1105. https://doi.org/10.2174/1389201021666200928101029

    Article  CAS  Google Scholar 

  • Shah, K. J., Singh, A. V., Tripathi, S., Hussain, T., & You, Z. (2022). Environmental management system as sustainable tools in water environmental management: A review. Current Chinese Science, 2(1), 48-56(9). https://doi.org/10.2174/2210298102999211228114721

  • Shi, Q., Chen, C., Zhang, W., Wu, P., Sun, M., Wu, H., et al. (2021). Transgenic eukaryotic microalgae as green factories: Providing new ideas for the production of biologically active substances. Journal of Applied Phycology, 33(2), 705–728. https://doi.org/10.1007/s10811-020-02350-7

    Article  Google Scholar 

  • Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Cornejo, P., Kamaraj, B., et al. (2021). Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 268, 129323. https://doi.org/10.1016/j.chemosphere.2020.129323

    Article  CAS  Google Scholar 

  • Singh, M., Dotaniya, M.L., Mishra, A., Dotaniya, C.K., Regar, K.L., & Lata, M. (2016). Role of biofertilizers in conservation agriculture. Conserv. Agric. An Approach to Combat Clim. Chang. Indian Himalaya, 113–134. https://doi.org/10.1007/978-981-10-2558-7_4.

  • Skjånes, K., Aesoy, R., Herfindal, L., & Skomedal, H. (2021). Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. Physiologia Plantarum, 173(2), 612–623. https://doi.org/10.1111/ppl.13472

    Article  CAS  Google Scholar 

  • Sneha, S., Anitha, B., Sahair, R. A., Raghu, N., Gopenath, T. S., Chandrashekrappa, G. K., & Basalingappa, M. K. (2018). Biofertilizer for crop production and soil fertility. Journal Agriculture Research, 6, 299–306.

    CAS  Google Scholar 

  • Sofy, M. R., Mohamed, H. I., Dawood, M. F. A., Abu-Elsaoud, A. M., & Soliman, M. H. (2021). Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Archives of Agronomy and Soil Science., 68(14), 2005–2026. https://doi.org/10.1080/03650340.2021.1949709

    Article  CAS  Google Scholar 

  • Song, T., Mårtensson, L., Eriksson, T., Zheng, W., & Rasmussen, U. (2005). Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiology Ecology, 54, 131–140. https://doi.org/10.1016/J.FEMSEC.2005.03.008

    Article  CAS  Google Scholar 

  • Srimongkol, P., Thongchul, N., Phunpruch, S., & Karnchanatat, A. (2019). Ability of marine cyanobacterium Synechococcus sp. VDW to remove ammonium from brackish aquaculture wastewater. Agricultural Water Management, 212, 155–161. https://doi.org/10.1016/j.agwat.2018.09.006

    Article  Google Scholar 

  • Srimongkol, P., Sangtanoo, P., Songserm, P., Watsuntorn, W., & Karnchanatat, A. (2022). Microalgae based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Frontiers in Bioengineering and Biotechnology, 10, 904046. https://doi.org/10.3389/fbioe.2022.904046

    Article  Google Scholar 

  • Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11(1), 1–16. https://doi.org/10.1186/s13068-018-1275-9

    Article  CAS  Google Scholar 

  • Suttisuwan, R., Phunpruch, S., Saisavoey, T., Sangtanoo, P., Thongchul, N., & Karnchanatat, A. (2019). Isolation and characterization of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein Synechococcus sp. VDW). Food Biotechnology, 33(4), 303–324. https://doi.org/10.1080/08905436.2019.1673171

    Article  CAS  Google Scholar 

  • Suttisuwan, R., Phunpruch, S., Saisavoey, T., Sangtanoo, P., Thongchul, N., & Karnchanatat, A. (2019). Free radical scavenging properties and induction of apoptotic effects of Fa fraction obtained after proteolysis of bioactive peptides from microalgae Synechococcus sp. VDW. Food Technology and Biotechnology, 57(3), 358–368. https://doi.org/10.17113/ftb.57.03.19.6028

    Article  CAS  Google Scholar 

  • Talukdar, J., Dasgupta, S., Nagle, V., & Bhadra, B. (2020). COVID19: Potential of microalgae derived natural astaxanthin as adjunctive supplement in alleviating cytokine storm. Available at SSRN 1–17.

  • Tan, X. -B., Zhang, Y. -L., Zhao, X. -C., Yang, L. -B., Yangwang, S. -C., Zou, Y., & Lu, J. -M. (2021). Anaerobic digestates grown oleaginous microalgae for pollutants removal and lipids production. Chemosphere, 308, 136177. https://doi.org/10.1016/j.chemosphere.2022.136177

  • Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89, 47–57. http://www.jstor.org/stable/24110431.

    CAS  Google Scholar 

  • Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70, 1919–1929. https://doi.org/10.1016/j.chemosphere.2007.07.038

    Article  CAS  Google Scholar 

  • Tripathi, S., & Hussain, T. (2021). Treatment of industrial wastewater through new approaches using algae biomass. In: M. Shah (Ed.), The future of effluent treatment plants-biological treatment systems (pp. 89–112). Elsevier. https://doi.org/10.1016/B978-0-12-822956-9.00006-4

  • Tripathi, S., & Hussain, T. (2022). Water and wastewater treatment through ozone-based technologies. Development in wastewater treatment research and processes. Elsevier Inc. https://doi.org/10.1016/b978-0-323-85583-9.00015-6

  • Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Biotechnology, 15, 265–284. https://doi.org/10.1007/S11157-016-9397-7

    Article  CAS  Google Scholar 

  • Vadiveloo, A., Foster, L., Kwambai, C., Bahri, P. A., & Moheimani, N. R. (2021). Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). Science Total Environment, 775, 145853. https://doi.org/10.1016/j.scitotenv.2021.145853

    Article  CAS  Google Scholar 

  • Vaishampayan, A., Sinha, R. P., Häder, D.-P., Dey, T., Gupta, A. K., Bhan, U., & Rao, A. L. (2001). Cyanobacterial biofertilizers in rice agriculture. Botanical Review, 67, 453–516. https://doi.org/10.1007/BF02857893

    Article  Google Scholar 

  • Vassalle, L., Díez-Montero, R., Machado, A. T. R., Moreira, C., Ferrer, I., Mota, C. R., & Passos, F. (2020). Upflow anaerobic sludge blanket in microalgae-based sewage treatment: Co-digestion for improving biogas production. Bioresource Technology, 300, 122677. https://doi.org/10.1016/j.biortech.2019.122677

    Article  CAS  Google Scholar 

  • Viegas, C., Gouveia, L., & Gonçalves, M. (2021). Evaluation of microalgae as bioremediation agent for poultry effluent and biostimulant for germination. Environmental Technology and Innovation, 24, 102048. https://doi.org/10.1016/J.ETI.2021.102048

    Article  CAS  Google Scholar 

  • Viegas, C., Gouveia, L., & Gonçalves, M. (2021). Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal Environmental Management, 286, 112187. https://doi.org/10.1016/J.JENVMAN.2021.112187

    Article  CAS  Google Scholar 

  • Villar-Navarro, E., Baena-Nogueras, R. M., Paniw, M., Perales, J. A., & Lara-Martín, P. A. (2018). Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Research, 139, 19–29. https://doi.org/10.1016/j.watres.2018.03.072

    Article  CAS  Google Scholar 

  • Wang, K., Khoo, S. K., Kit, W. C., Anurita, S., Wei-Hsin, C., Jo-Shu, C., et al. (2021). Microalgae: The future supply house of biohydrogen and biogas. Frontiers Energy Research, 9, 660399. https://doi.org/10.3389/fenrg.2021.660399

    Article  Google Scholar 

  • Wang, S., Mukhambet, Y., Esakkimuthu, S., & Abomohra, A. (2022). Integrated microalgal biorefinery—Routes, energy, economic and environmental perspectives. Journal Cleanear Production, 348, 131245. https://doi.org/10.1016/j.jclepro.2022.131245

    Article  CAS  Google Scholar 

  • Wu, J., Gu, X., Yang, D., Xu, S., Wang, S., Chen, X., & Wang, Z. (2021). Bioactive substances and potentiality of marine microalgae. Food Science & Nutrition, 9(9), 5279–5292. https://doi.org/10.1002/fsn3.2471

    Article  Google Scholar 

  • Wuang, S. C., Khin, M. C., Chua, P. Q., & Luo, Y. D. (2016). Use of spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009

  • Zhang, J., Wang, X., & Zhou, Q. (2017). Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass and Bioenergy, 97, 132–138. https://doi.org/10.1016/J.BIOMBIOE.2016.12.024

    Article  Google Scholar 

  • Zhong, D., Zhang, D., Xie, T., & Zhou, M. (2020). Biodegradable microalgae-based carriers for targeted delivery and imaging guided therapy toward lung metastasis of breast cancer. Small (Weinheim an Der Bergstrasse, Germany), 16(20), 2000819. https://doi.org/10.1002/smll.202000819

    Article  CAS  Google Scholar 

  • Zhu, Q., Chen, X., Wu, J., Zhou, Y., Qian, Y., Fang, M., et al. (2017). Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: In silico gastrointestinal hydrolysis and molecular mechanism. European Food Research and Technology, 243(10), 1739–1748. https://doi.org/10.1007/s00217-017-2879-1

    Article  CAS  Google Scholar 

  • Zhu, Y., Tu, X., Chai, X. S., Wei, Q., & Guo, L. (2018). Biological activities and nitrogen and phosphorus removal during the Anabaena flos-aquae biofilm growth using different nutrient form. Bioresource Technology, 251, 7–12. https://doi.org/10.1016/j.biortech.2017.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors expressed their gratitude to GD Goenka University for the support and infrastructure provided to the RD.

Author information

Authors and Affiliations

Authors

Contributions

SG, RD, TH, AF, LG, KK, HIM: conceptualization, investigation, writing — original draft, review and editing, data curation, formal analysis, visualization, writing — original draft.

SG, RD, TH, AF, LG, KK, HIM: conceptualization; data curation; formal analysis; funding acquisition; investigation; methodology.

SG, RD, TH, AF, LG, KK, HIM: roles/writing — original draft.

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Raunak Dhanker, Touseef Hussain or Heba I. Mohamed.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

The manuscript is original. It has not been published previously by any of the authors and even not under the consideration in any other journal at the time of submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Dhanker, R., Hussain, T. et al. Modern Advancement in Biotechnological Applications for Wastewater Treatment through Microalgae: a Review. Water Air Soil Pollut 234, 417 (2023). https://doi.org/10.1007/s11270-023-06409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06409-2

Keywords

Navigation