Skip to main content
Log in

Photocatalytic and Antibacterial Potential of Silver Nanocubes and Nanorods Synthesized via Polyol Reduction Method

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water pollution is a real threat to existence of life on earth. Among major water pollutants, hazardous organic dyes present in industrial effluents need to be immediately addressed. These dyes can be photodegraded using nanocatalysts. Metal-based nanocatalysts are preferred for photocatalytic applications due to their high surface area and suitable energy band gap to produce and sustain photo-generated electrons and holes. Therefore, AgNPs of different morphology (cubic and rod shape) has been reported in current study. AgNPs in form of nanocubes and nanorods have been synthesized by polyol reduction method using ethylene glycol as reducing agent and polyvinylpyrrolidone (PVP) as capping agent. Effect of etchants (KCl and FeCl2) was studied on the morphology of AgNPs. The prepared nanocubes and nanorods were characterized by UV-visible, powder X-ray diffraction (PXRD), and scanning electron microscope (SEM). Nanocubes and nanorods were eventually evaluated for their photocatalytic potential under sunlight irradiation. Silver nanorods were found more active for photocatalytic degradation of methylene blue (MB) dye with 88% degradation after 110 minutes. Antibacterial potential of AgNPs was also evaluated by disk diffusion method against gram-positive and gram-negative strains. AgNPs were found more noxious against gram-negative bacterial strains.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al-Zaban, M. I., Mahmoud, M. A., & AlHarbi, M. A. (2021). Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi Journal of Biological Sciences, 28(3), 2007–2013.

    Article  CAS  Google Scholar 

  • Arai, M. S., & de Camargo, A. S. (2021). Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. Nanoscale Advances, 3(18), 5135–5165.

    Article  CAS  Google Scholar 

  • Cao, X., Zhu, L., Bai, Y., Li, F., & Yu, X. (2022). Green one-step synthesis of silver nanoparticles and their biosafety and antibacterial properties. Green Chemistry Letters and Reviews, 15(1), 28–34.

    Article  Google Scholar 

  • Chen, Y., Wang, P., Hao, H., Hong, J., Li, H., Ji, S., & Han, X. (2021). Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. Journal of the American Chemical Society, 143(44), 18643–18651.

    Article  CAS  Google Scholar 

  • Ghamarpoor, R., & Jamshidi, M. (2022). Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Scientific Reports, 12(1), 1–15.

    Article  Google Scholar 

  • Gherbi, B., Laouini, S. E., Meneceur, S., Bouafia, A., Hemmami, H., Tedjani, M. L., & Menaa, F. (2022). Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: Efficiency for photocatalytic adsorption of methyl orange. Sustainability, 14(18), 11300.

    Article  CAS  Google Scholar 

  • Hong, G. B., Luo, Y. H., Chuang, K. J., Cheng, H. Y., Chang, K. C., & Ma, C. M. (2022). Facile synthesis of silver nanoparticles and preparation of conductive ink. Nanomaterials, 12(1), 171.

    Article  Google Scholar 

  • Ismail, M., Akhtar, K., Khan, M., Kamal, T., Khan, M. A., M Asiri, A., & Khan, S. B. (2019). Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Current Pharmaceutical Design, 25(34), 3645–3663.

    Article  CAS  Google Scholar 

  • Jabbar, I., Zaman, Y., Althubeiti, K., Al Otaibi, S., Ishaque, M. Z., Rahman, N., & Del Rosso, T. (2022). Diluted magnetic semiconductor properties in TM doped ZnO nanoparticles. RSC Advances, 12(21), 13456–13463.

    Article  CAS  Google Scholar 

  • Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., & Shah, L. A. (2022). Review on methylene blue: its properties, uses, toxicity and photodegradation. Water, 14(2), 242.

    Article  CAS  Google Scholar 

  • Khandel, P., Shahi, S. K., Soni, D. K., Yadaw, R. K., & Kanwar, L. (2018). Alpinia calcarata: Potential source for the fabrication of bioactive silver nanoparticles. Nano Convergence, 5(1), 1–17.

    Article  Google Scholar 

  • Kiio, T. M., & Park, S. (2021). Physical properties of nanoparticles do matter. Journal of Pharmaceutical Investigation, 51(1), 35–51.

    Article  CAS  Google Scholar 

  • Lin, C.-C., Lai, Y.-P., & Wu, K.-Y. (2022). A high-productivity process for mass-producing Fe3O4 nanoparticles by co-precipitation in a rotating packed bed. Powder Technology, 395, 369–376.

    Article  CAS  Google Scholar 

  • Mavaei, M., Chahardoli, A., Shokoohinia, Y., Khoshroo, A., & Fattahi, A. (2020). One-step synthesized silver nanoparticles using isoimperatorin: Evaluation of photocatalytic, and electrochemical activities. Scientific Reports, 10(1), 1–12.

    Article  Google Scholar 

  • Meikle, T. G., Dyett, B. P., Strachan, J. B., White, J., Drummond, C. J., & Conn, C. E. (2020). Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Applied Materials & Interfaces, 12(6), 6944–6954.

    Article  CAS  Google Scholar 

  • Monti, E., Ventimiglia, A., Garcia Soto, C. A., Martelli, F., Rodríguez-Aguado, E., Cecilia, J. A., & Albonetti, S. (2022). Effect of the colloidal preparation method for supported preformed colloidal Au nanoparticles for the liquid phase oxidation of 1, 6-hexanediol to adipic acid. Catalysts, 12(2), 196.

    Article  CAS  Google Scholar 

  • Olga, M., Jana, M., Anna, M., Irena, K., Jan, M., & Alena, Č. (2022). Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnology Advances, 58, 107905.

    Article  Google Scholar 

  • Safo, I., Werheid, M., Dosche, C., & Oezaslan, M. (2019). The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances, 1(8), 3095–3106.

    Article  CAS  Google Scholar 

  • Schmidt, R., Prado-Gonjal, J., & Morán, E. (2022). Microwave assisted hydrothermal synthesis of nanoparticles. arXiv preprint arXiv:2203.02394

  • Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles Biomaterials and bionanotechnology (pp. 527–612). Elsevier.

    Google Scholar 

  • Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16(1), 1–28.

    Article  Google Scholar 

  • Siddique, A. B., Ahmad, S., Shaheen, M. A., Ali, A., Tahir, M. N., Vieira, L. C., & Siddeeg, S. M. (2022). Synthesis, antimicrobial potential and computational studies of crystalline 4-bromo-2-(1,4,5-triphenyl-1H-imidazole-2-yl) phenol and its metal complexes. CrystEngComm, 24, 8237.

    Article  CAS  Google Scholar 

  • Tawade, B. V., Apata, I. E., Singh, M., Das, P., Pradhan, N., Al-Enizi, A. M., & Raghavan, D. (2021). Recent developments in the synthesis of chemically modified nanomaterials for use in dielectric and electronics applications. Nanotechnology, 32(14), 142004.

    Article  CAS  Google Scholar 

  • Van Swieten, T. P., Van Omme, T., Van Den Heuvel, D. J., Vonk, S. J., Spruit, R. G., Meirer, F., & Rabouw, F. T. (2021). Mapping elevated temperatures with a micrometer resolution using the luminescence of chemically stable upconversion nanoparticles. ACS applied nano materials, 4(4), 4208–4215.

    Article  Google Scholar 

  • Vasiljevic, Z., Dojcinovic, M., Vujancevic, J., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N., & Nikolic, M. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. Royal Society Open Science, 7(9), 200708.

    Article  CAS  Google Scholar 

  • Wang, R., Yang, R., Wang, B., & Gao, W. (2016). Efficient degradation of methylene blue by the nano TiO2-functionalized graphene oxide nanocomposite photocatalyst for wastewater treatment. Water, Air, & Soil Pollution, 227(1), 1–9.

    Article  Google Scholar 

  • Wang, Y., Wang, Y., Bai, J., Duan, S., Wang, R., & Lau, W.-M. (2022). In-situ etching synthesis of 3D self-supported serrated Ni-WO3 for oxygen evolution reaction. Journal of Alloys and Compounds, 893, 162134.

    Article  CAS  Google Scholar 

  • Zaman, Y., Ishaque, M. Z., Ajmal, S., Shahzad, M., Siddique, A. B., Hameed, M. U., & Yasin, G. (2023). Tamed synthesis of AgNPs for photodegradation and anti-bacterial activity: Effect of size and morphology. Inorganic Chemistry Communications, 150, 110523.

    Article  CAS  Google Scholar 

  • Zamana, Y., Ishaquea, M., Sattarb, R., Rehmanb, M., Sabac, I., Kanwala, S., & Qadirb, R. (2022). Antibacterial potential of silver nanoparticles synthesized using tri-sodium citrate via controlled exploitation of temperature. Digest Journal of Nanomaterials and Biostructures, 17(3), 979–987.

    Article  Google Scholar 

  • Zhang, M., Liu, M., Jiang, Y., Li, J., & Chen, Q. (2020). Synthesis of immobilized CdS/TiO2 nanofiber heterostructure photocatalyst for efficient degradation of toluene. Water, Air, & Soil Pollution, 231(3), 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Higher Education Commission Start up research grant Program No: 21-2079/SRGP/R&D/HEC/2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasir Zaman or Abu Bakar Siddique.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishaque, M.Z., Zaman, Y., Shahzad, M. et al. Photocatalytic and Antibacterial Potential of Silver Nanocubes and Nanorods Synthesized via Polyol Reduction Method. Water Air Soil Pollut 234, 252 (2023). https://doi.org/10.1007/s11270-023-06269-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06269-w

Keywords

Navigation