Skip to main content

Advertisement

Log in

Novel AgI/MIL-125(Ti) heterojunction for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway and degradation mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of organic pollutants in wastewater driven by solar energy is considered one of the effective means for environmental remediation. MIL-125(Ti) is a three-dimensional porous ordered metal-organic framework with Ti nodes, which has the advantages of porous structure, adjustable pore size, high chemical and thermal stability. However, the application of MIL-125(Ti) for photocatalysis is limited due to its limited light absorption and low carrier separation efficiency. Here, a novel AgI/MIL-125(Ti) composite was prepared by an ion precipitation exchange method to enhance the overcome of the above deficiencies. Characterization analysis reveals that AgI was uniformly loaded on the surface of MIL-125(Ti), forming a dense AgI/MIL-125(Ti) heterojunction. The light response range of AgI/MIL-125(Ti) composites was significantly improved, which promoted the generation of free radicals. In addition, the photogenerated electrons in the conduction band of AgI were transferred to MIL-125(Ti) by ligand-to-metal charge transfer (LMCT) mechanism under visible light, which avoids the recombination of e-h+ and prolongs the service life of the photocatalyst. Furthermore, as the main active substances, ·OH and ·O2- were generated in large quantities on the AgI surface, the presence of Ti3+-Ti4+ valence electron transfer band in the composite, significantly improved the photocatalytic performance. Therefore, the photocatalytic performance of AgI/MIL-125(Ti) composite for gentian violet degradation reached 95.7% in 120 minutes which was higher than that of the single component under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1

Similar content being viewed by others

Data availability statement

The authors declare that data supporting the findings of this study are available within the article.

References

  • Abdelhameed, R. M., Simões, M. M. Q., Silva, A. M. S., & Rocha, J. (2015). Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles. Chemistry A European Journal, 21, 11072–11081. https://doi.org/10.1002/chem.201500808

    Article  CAS  Google Scholar 

  • Ao, D., Zhang, J., & Liu, H. (2018). Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). Journal of Photochemistry and Photobiology A: Chemistry, 364, 524–533. https://doi.org/10.1016/j.jphotochem.2018.06.044

    Article  CAS  Google Scholar 

  • Ben Ameur, S., BelHadjltaief, H., Duponchel, B., Leroy, G., Amlouk, M., Guermazi, H., & Guermazi, S. (2019). Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon, 5. https://doi.org/10.1016/j.heliyon.2019.e01912

  • Chang, C., Yang, H., Mu, W., Cai, Y., Wang, L., Yang, L., & Qin, H. (2019). In situ fabrication of bismuth oxyiodide (Bi7O9I3/Bi5O7I) n-n heterojunction for enhanced degradation of triclosan (TCS) under simulated solar light irradiation. Applied Catalysis B: Environmental, 254, 647–658. https://doi.org/10.1016/j.apcatb.2019.05.030

    Article  CAS  Google Scholar 

  • Chen, D., Xie, Z., Zeng, Y., Lv, W., Zhang, Q., Wang, F., Liu, G., & Liu, H. (2019). Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. Journal of the Taiwan Institute of Chemical Engineers, 104, 250–259. https://doi.org/10.1016/j.jtice.2019.08.007

    Article  CAS  Google Scholar 

  • Chen, F., Yang, Q., Sun, J., Yao, F., Wang, S., Wang, Y., Wang, X., Li, X., Niu, C., Wang, D., & Zeng, G. (2016). Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: Mineralization efficiency and mechanism. ACS Applied Materials & Interfaces, 8, 32887–32900. https://doi.org/10.1021/acsami.6b12278

    Article  CAS  Google Scholar 

  • Chen, H., Yuan, X., Jiang, L., Wang, H., Yu, H., & Wang, X. (2022). Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Applied Catalysis B-Environmental, 302. https://doi.org/10.1016/j.apcatb.2021.120823

  • Chen, M., Guo, C., Hou, S., Lv, J., Zhang, Y., Zhang, H., & Xu, J. (2020b). A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Applied Catalysis B-Environmental, 266. https://doi.org/10.1016/j.apcatb.2020.118614

  • Chen, X., Xiao, S., Wang, H., Wang, W., Cai, Y., Li, G., Qiao, M., Zhu, J., Li, H., Zhang, D., & Lu, Y. (2020a). MOFs Conferred with Transient Metal Centers for Enhanced Photocatalytic Activity. Angewandte Chemie-International Edition, 59, 17182–17186. https://doi.org/10.1002/anie.202002375

    Article  CAS  Google Scholar 

  • Cheng, H., Wang, W., Huang, B., Wang, Z., Zhan, J., Qin, X., Zhang, X., & Dai, Y. (2013). Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. Journal of Materials Chemistry A, 1, 7131–7136. https://doi.org/10.1039/c3ta10849j

    Article  CAS  Google Scholar 

  • Choi, J., Reddy, D. A., & Kim, T. K. (2015). Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceramics International, 41, 13793–13803. https://doi.org/10.1016/j.ceramint.2015.08.062

    Article  CAS  Google Scholar 

  • Fatima, R., & Kim, J.-O. (2021). Inhibiting photocatalytic electron-hole recombination by coupling MIL-125 (Ti) with chemically reduced, nitrogen-containing graphene oxide. Applied Surface Science, 541. https://doi.org/10.1016/j.apsusc.2020.148503

  • Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie-International Edition, 51, 3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  • Gao, Z., Wang, J., Muhammad, Y., Zhang, Y., Shah, S. J., Hu, Y., Chu, Z., Zhao, Z., & Zhao, Z. (2020). Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chemical Engineering Journal, 388, 124389. https://doi.org/10.1016/j.cej.2020.124389

    Article  CAS  Google Scholar 

  • Georgin, J., Drumm, F. C., Grassi, P., Franco, D., Allasia, D., & Dotto, G. L. (2018). Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents. Water Science and Technology, 78, 1693–1703. https://doi.org/10.2166/wst.2018.448

    Article  CAS  Google Scholar 

  • Guan, C., Jiang, J., Pang, S., Chen, X., Webster, R. D., & Lim, T.-T. (2020b). Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation. Chemical Engineering Journal, 387. https://doi.org/10.1016/j.cej.2019.123726

  • Guan, C. T., Jiang, J., Pang, S. Y., Chen, X., Webster, R. D., & Lim, T. T. (2020a). Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation. Chemical Engineering Journal, 387. https://doi.org/10.1016/j.cej.2019.123726

  • Han, S.-Y., Pan, D.-L., Chen, H., Bu, X.-B., Gao, Y.-X., Gao, H., Tian, Y., Li, G.-S., Wang, G., Cao, S.-L., Wan, C.-Q., & Guo, G.-C. (2018). A Methylthio-Functionalized-MOF Photocatalyst with High Performance for Visible-Light-Driven H-2 Evolution. Angewandte Chemie-International Edition, 57, 9864–9869. https://doi.org/10.1002/anie.201806077

    Article  CAS  Google Scholar 

  • Harouni, S., Bouanimba, N., & Boulares, N. (2019). Synthesis of ZnO Nanostructures Using Sublimation-Condensation and Sol-Gel Methods: Evaluation of the Photocatalytic Degradation Activity of Industrial Dye. Acta Physica Polonica A, 136, 424–431. https://doi.org/10.12693/APhysPolA.136.424

    Article  CAS  Google Scholar 

  • He, X., Wu, M., Ao, Z., Lai, B., Zhou, Y., An, T., & Wang, S. (2021). Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. Journal of Hazardous Materials, 403, 124048. https://doi.org/10.1016/j.jhazmat.2020.124048

    Article  CAS  Google Scholar 

  • Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D'Arras, L., Sassoye, C., Rozes, L., Mellot-Draznieks, C., & Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal-Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135, 10942–10945. https://doi.org/10.1021/ja405350u

    Article  CAS  Google Scholar 

  • Hlophe, P., Mahlalela, L. C., & Dlamini, L. N. (2019). A composite of platelet-like orientated BiVO4 fused with MIL-125(Ti): Synthesis and characterization. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-46498-w

  • Hong, J., Chen, C., Bedoya, F. E., Kelsall, G. H., O'Hare, D., & Petit, C. (2016). Carbon nitride nanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities. Catalysis Science & Technology, 6, 5042–5051. https://doi.org/10.1039/c5cy01857a

    Article  CAS  Google Scholar 

  • Hu, Q., Dong, J., Chen, Y., Yi, J., Xia, J., Yin, S., & Li, H. (2022). In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/ photocatalyst with enhanced removal efficiency of organic contaminants. Applied Surface Science, 583. https://doi.org/10.1016/j.apsusc.2022.152423

  • Hu, Q., Yin, S., Chen, Y., Wang, B., Li, M., Ding, Y., Di, J., Xia, J., & Li, H. (2020). Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 585. https://doi.org/10.1016/j.colsurfa.2019.124078

  • Huang, L., & Liu, B. (2016). Synthesis of a novel and stable reduced graphene oxide/MOF hybrid nanocomposite and photocatalytic performance for the degradation of dyes. RSC Advances, 6, 17873–17879. https://doi.org/10.1039/C5RA25689E

    Article  CAS  Google Scholar 

  • Jia, Y., Li, S., Gao, J., Zhu, G., Zhang, F., Shi, X., Huang, Y., & Liu, C. (2019). Highly efficient (BiO)(2)CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Applied Catalysis B-Environmental, 240, 241–252. https://doi.org/10.1016/j.apcatb.2018.09.005

    Article  CAS  Google Scholar 

  • Jiang, L., Yuan, X., Zeng, G., Wu, Z., Liang, J., Chen, X., Leng, L., Wang, H., & Wang, H. (2018). Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Applied Catalysis B-Environmental, 221, 715–725. https://doi.org/10.1016/j.apcatb.2017.09.059

    Article  CAS  Google Scholar 

  • Jin, J., Li, P., Chun, D. H., Jin, B., Zhang, K., & Park, J. H. (2021). Defect Dominated Hierarchical Ti-Metal-Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal. Advanced Functional Materials, 31. https://doi.org/10.1002/adfm.202102511

  • Kolobov, N., Goesten, M. G., & Gascon, J. (2021). Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angewandte Chemie-International Edition, 60, 26038–26052. https://doi.org/10.1002/anie.202106342

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Sethurajan, M., Kadarkarai, M., & Aruliah, R. (2017). Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. Journal of Environmental Chemical Engineering, 5, 716–724. https://doi.org/10.1016/j.jece.2016.12.021

    Article  CAS  Google Scholar 

  • Li, N., Liu, X., Zhou, J., Chen, W., & Liu, M. (2020). Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chemical Engineering Journal, 399. https://doi.org/10.1016/j.cej.2020.125782

  • Li, Y., Shan, Q. J., Chen, L., Chen, W., & Luan, C. Y. (2021). Preparation, characterization and photocatalytic performance of K-8 Fe(H2O)W11MnO39 /PANI/TiO2 ternary composite. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 647, 2226–2234. https://doi.org/10.1002/zaac.202100230

    Article  CAS  Google Scholar 

  • Li, Z., Che, G., Jiang, W., Liu, L., & Wang, H. (2019). Visible-light-driven CQDs@MIL-125(Ti) nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of tetracycline. RSC Advances, 9, 33238–33245. https://doi.org/10.1039/C9RA05600A

    Article  CAS  Google Scholar 

  • Liang, J., Liu, F., Deng, J., Li, M., & Tong, M. (2017). Efficient bacterial inactivation with Z-scheme AgI/Bi2MoO6 under visible light irradiation. Water Research, 123, 632–641. https://doi.org/10.1016/j.watres.2017.06.060

    Article  CAS  Google Scholar 

  • Lin, N., Pei, L. Z., Wei, T., & Yu, H. Y. (2015). Synthesis of Cu vanadate nanorods for visible-light photocatalytic degradation of gentian violet. Crystal Research and Technology, 50, 255–262. https://doi.org/10.1002/crat.201400461

    Article  CAS  Google Scholar 

  • Luo, S., Liu, X., Wei, X., Fu, M., Lu, P., Li, X., Jia, Y., Ren, Q., & He, Y. (2020). Noble-metal-free cobaloxime coupled with metal-organic frameworks NH2-MIL-125: A novel bifunctional photocatalyst for photocatalytic NO removal and H-2 evolution under visible light irradiation. Journal of Hazardous Materials, 399. https://doi.org/10.1016/j.jhazmat.2020.122824

  • Lv, J., Liu, X., Li, P., Jin, W., Xu, J., & Zhao, Y. (2019). AgI loading BiOI composites with enhanced photodegradation efficiency for bisphenol A under simulated solar light. Science of The Total Environment, 669, 194–204. https://doi.org/10.1016/j.scitotenv.2019.03.077

    Article  CAS  Google Scholar 

  • Ovejero, G., Rodriguez, A., Vallet, A., & Garcia, J. (2012). Ni supported on Mg-Al oxides for continuous catalytic wet air oxidation of Crystal Violet. Applied Catalysis B-Environmental, 125, 166–171. https://doi.org/10.1016/j.apcatb.2012.05.030

    Article  CAS  Google Scholar 

  • Pan, Y., Yuan, X., Jiang, L., Wang, H., Yu, H., & Zhang, J. (2020). Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight. Chemical Engineering Journal, 384. https://doi.org/10.1016/j.cej.2019.123310

  • Rada, Z. H., Abid, H. R., Shang, J., He, Y., Webley, P., Liu, S., Sun, H., & Wang, S. (2015). Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 160, 318–327. https://doi.org/10.1016/j.fuel.2015.07.088

    Article  CAS  Google Scholar 

  • Saouma, C. T., Richard, S., Smolders, S., Delley, M. F., Ameloot, R., Vermoortele, F., De Vos, D. E., & Mayer, J. M. (2018). Bulk-to-Surface Proton-Coupled Electron Transfer Reactivity of the Metal-Organic Framework MIL-125. Journal of the American Chemical Society, 140, 16184–16189. https://doi.org/10.1021/jacs.8b09120

    Article  CAS  Google Scholar 

  • Sekar, S., Rabani, I., Bathula, C., Kumar, S., Govindaraju, S., Yun, K., Seo, Y.-S., Kim, D. Y., & Lee, S. (2022). Graphitic carbon-encapsulated V2O5 nanocomposites as a superb photocatalyst for crystal violet degradation. Environmental Research, 205. https://doi.org/10.1016/j.envres.2021.112201

  • Shamraiz, U., Badshah, A., Hussain, R. A., Nadeem, M. A., & Saba, S. (2017). Surfactant free fabrication of copper sulphide (CuS-Cu2S) nanoparticles from single source precursor for photocatalytic applications. Journal of Saudi Chemical Society, 21, 390–398. https://doi.org/10.1016/j.jscs.2015.07.005

    Article  CAS  Google Scholar 

  • Shin, S., Sarker, M., Lee, H.-I., & Jhung, S. H. (2019). Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel. Chemical Engineering Journal, 370, 1467–1473. https://doi.org/10.1016/j.cej.2019.03.290

    Article  CAS  Google Scholar 

  • Song, X., Wang, Y., Zhu, T., Liu, J., & Zhang, S. (2021). Facile synthesis a novel core–shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light. Chemical Engineering Journal, 416, 129126. https://doi.org/10.1016/j.cej.2021.129126

    Article  CAS  Google Scholar 

  • Song, Y., Li, Z., Ji, P., Kaufmann, M., Feng, X., Chen, J. S., Wang, C., & Lin, W. (2019). Metal-organic framework nodes support single-site Nickel (II) hydride catalysts for the hydrogenolysis of aryl ethers. ACS Catalysis, 9, 1578–1583. https://doi.org/10.1021/acscatal.8b04611

    Article  CAS  Google Scholar 

  • Tao, F. H., Li, F. Y., Huang, J. F., Xue, Z. Y., Yu, C. H., Cai, Z. Y., & Pei, L. Z. (2022). A General Hydrothermal Growth and Photocatalytic Performance of Barium Tin Hydroxide/Tin Dioxide Nanorods. Crystal Research and Technology, 57. https://doi.org/10.1002/crat.202100156

  • Tian, Y., Cui, Q., Xu, L., Jiao, A., Li, S., Wang, X., & Chen, M. (2021). Pronounced interfacial interaction in icosahedral Au@C-60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition. Journal of Materials Science & Technology, 94, 10–21. https://doi.org/10.1016/j.jmst.2021.02.062

    Article  CAS  Google Scholar 

  • Wang, C., Xue, Y., Wang, P., & Ao, Y. (2018). Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation. Journal of Alloys and Compounds, 748, 314–322. https://doi.org/10.1016/j.jallcom.2018.03.129

    Article  CAS  Google Scholar 

  • Wang, H., Yuan, X., Wu, Y., Zeng, G., Chen, X., Leng, L., & Li, H. (2015a). Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Applied Catalysis B-Environmental, 174, 445–454. https://doi.org/10.1016/j.apcatb.2015.03.037

    Article  CAS  Google Scholar 

  • Wang, H., Yuan, X., Wu, Y., Zeng, G., Chen, X., Leng, L., Wu, Z., Jiang, L., & Li, H. (2015b). Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction. Journal of Hazardous Materials, 286, 187–194. https://doi.org/10.1016/j.jhazmat.2014.11.039

    Article  CAS  Google Scholar 

  • Wu, Z., Zhang, K., Li, X., Hai, G., Huang, X., & Wang, G. (2021). Conjugated polymer coated MIL-125(Ti) as an efficient photocatalyst for selective oxidation of benzylic C-H bond under visible light. Applied Surface Science, 555. https://doi.org/10.1016/j.apsusc.2021.149732

  • Xiao, J.-D., Shang, Q., Xiong, Y., Zhang, Q., Luo, Y., Yu, S.-H., & Jiang, H.-L. (2016). Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie-International Edition, 55, 9389–9393. https://doi.org/10.1002/anie.201603990

    Article  CAS  Google Scholar 

  • Xu, Y., Liu, Q., Xie, M., Huang, S., He, M., Huang, L., Xu, H., & Li, H. (2018). Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability. Journal of Colloid and Interface Science, 528, 70–81. https://doi.org/10.1016/j.jcis.2018.05.066

    Article  CAS  Google Scholar 

  • Yan, L. F., Wang, W., Zhao, Q. Q., Zhu, Z. J., Liu, B. J., & Hu, C. Y. (2022). Construction of perylene diimide/CuS supramolecular heterojunction for the highly efficient visible light-driven environmental remediation. Journal of Colloid and Interface Science, 606, 898–911. https://doi.org/10.1016/j.jcis.2021.06.005

    Article  CAS  Google Scholar 

  • Yang, S., Li, X., Zeng, G., Cheng, M., Huang, D., Liu, Y., Zhou, C., Xiong, W., Yang, Y., Wang, W., & Zhang, G. (2021). Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coordination Chemistry Reviews, 438. https://doi.org/10.1016/j.ccr.2021.213874

  • Yang, Y., Zeng, Z., Zhang, C., Huang, D., Zeng, G., Xiao, R., Lai, C., Zhou, C., Guo, H., Xue, W., Cheng, M., Wang, W., & Wang, J. (2018). Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight. Chemical Engineering Journal, 349, 808–821. https://doi.org/10.1016/j.cej.2018.05.093

    Article  CAS  Google Scholar 

  • Yang, Z., Xu, X., Liang, X., Lei, C., Cui, Y., Wu, W., Yang, Y., Zhang, Z., & Lei, Z. (2017a). Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Applied Catalysis B: Environmental, 205, 42–54. https://doi.org/10.1016/j.apcatb.2016.12.012

    Article  CAS  Google Scholar 

  • Yang, Z. W., Xu, X. Q., Liang, X. X., Lei, C., Cui, Y. H., Wu, W. H., Yang, Y. X., Zhang, Z., & Lei, Z. Q. (2017b). Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Applied Catalysis B-Environmental, 205, 42–54. https://doi.org/10.1016/j.apcatb.2016.12.012

    Article  CAS  Google Scholar 

  • Yin, S., Chen, Y., Gao, C., Hu, Q., Li, M., Ding, Y., Di, J., Xia, J., & Li, H. (2020). In-situ preparation preparation of MIL-125(Ti)/Bi2WO6 photocatalyst with accelerating charge carriers for the photodegradation of tetracycline hydrochloride. Journal of Photochemistry and Photobiology a-Chemistry, 387. https://doi.org/10.1016/j.jphotochem.2019.112149

  • Zeng, X., Wang, Z., Wang, G., Gengenbach, T. R., McCarthy, D. T., Deletic, A., Yu, J., & Zhang, X. (2017). Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B-Environmental, 218, 163–173. https://doi.org/10.1016/j.apcatb.2017.06.055

    Article  CAS  Google Scholar 

  • Zhang, P., & Lou, X. W. (2019). Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion. Advanced Materials, 31. https://doi.org/10.1002/adma.201900281

  • Zhang, W., Huang, W., Jin, J., Gan, Y., & Zhang, S. (2021). Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Applied Catalysis B: Environmental, 292, 120197. https://doi.org/10.1016/j.apcatb.2021.120197

    Article  CAS  Google Scholar 

  • Zhang, X., Yue, K., Rao, R., Chen, J., Liu, Q., Yang, Y., Bi, F., Wang, Y., Xu, J., & Liu, N. (2022). Synthesis of acidic MIL-125 from plastic waste: Significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene. Applied Catalysis B-Environmental, 310. https://doi.org/10.1016/j.apcatb.2022.121300

  • Zhao, J., Wei, D. Q., & Yang, Y. L. (2016). Magnetic solid-phase extraction for determination of the total malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water by high-performance liquid chromatography with fluorescence detection. Journal of Separation Science, 39, 2347–2355. https://doi.org/10.1002/jssc.201501363

    Article  CAS  Google Scholar 

  • Zhao, S. J., Qu, Z., Yan, N. Q., Li, Z., Zhu, W. F., Pan, J., Xu, J. F., & Li, M. D. (2015). Ag-modified AgI-TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury. Rsc Advances, 5, 30841–30850. https://doi.org/10.1039/c5ra00838g

    Article  CAS  Google Scholar 

  • Zhu, S.-R., Liu, P.-F., Wu, M.-K., Zhao, W.-N., Li, G.-C., Tao, K., Yi, F.-Y., & Han, L. (2016). Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light. Dalton Transactions, 45, 17521–17529. https://doi.org/10.1039/c6dt02912d

    Article  CAS  Google Scholar 

  • Zhu, Y.-P., Yin, J., Abou-Hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O. F., & Alshareef, H. N. (2020). Highly Stable Phosphonate-Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production. Advanced Materials, 32. https://doi.org/10.1002/adma.201906368

Download references

Acknowledgments

The authors acknowledge the financial supports from the National Natural Science Foundation of China (51608194), Hunan Provincial Natural Science Foundation of China (2019JJ50391), Natural Science Foundation of Hunan (2018TP1017), and the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Peng, Longbo Jiang or Xingzhong Yuan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Fei, J., Peng, X. et al. Novel AgI/MIL-125(Ti) heterojunction for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway and degradation mechanism. Water Air Soil Pollut 234, 278 (2023). https://doi.org/10.1007/s11270-023-06255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06255-2

Key words

Navigation