Abstract
Biochar-supported nanoscale zero-valent iron (800nZVI/BC) was prepared by carbothermal synthesis to remedy Cr(VI) wastewater. More than 99% of Cr(VI) was efficiently removed within 30 min at pH 2, and the maximum adsorption amount of Cr(VI) by 800nZVI/BC was 48.45 mg/L. The structural characteristics of 800nZVI/BC composite were determined adopting SEM, XRD, FTIR, and XPS. Batch experiments exhibited the Cr(VI) removal processes followed the pseud-second-order kinetics and Langmuir’s adsorption model. The effects of Fe/C mass ratio, 800nZVI/BC dosage, Cr(VI) concentration, initial pH, and different water bodies on Cr(VI) removal were investigated. The composites still showed a relatively stable Cr(VI) removal ability in oxidation resistance tests. The retention rates of Cr(VI) removal efficiency were respectively higher than 85% and 65% after 21 days aging in air and simulated groundwater. The Cr(VI) removal mechanism was studied according to the performance and structural characteristics. The removal of Cr(VI) might be relevant to the reduction of Cr(VI) by Fe0, Fe2+, and FeO, C-OH on the 800nZVI/BC surface and the formation of complex.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data and materials generated or analyzed during this study are included in this article.
Abbreviations
- 800nZVI/BC :
-
biochar-supported nanoscale zero-valent iron
- nZVI :
-
nano zero-valent iron
- BC :
-
biochar
- SG :
-
simulated groundwater
- SEM :
-
scanning electron microscope
- XRD :
-
X-ray diffraction (XRD)
- FTIR :
-
Fourier transform infrared spectroscopy
- XPS :
-
X-ray photoelectron spectroscopy
- BET :
-
Brunauer–Emmett–Teller
References
Akhtar, A., Akram, K., Aslam, Z., Ihsanullah, I., Baig, N., & Bello, M. M. (2022). Photocatalytic degradation of p-nitrophenol in wastewater by heterogeneous cobalt supported ZnO nanoparticles: Modeling and optimization using response surface methodology. Environmental Progress & Sustainable Energy, 6, e13984. https://doi.org/10.1002/ep.13984
Akhtar, A., Aslam, Z., Asghar, A., Bello, M. M., & Raman, A. A. A. (2020). Electrocoagulation of Congo red dye-containing wastewater: Optimization of operational parameters and process mechanism. Journal of Environmental Chemical Engineering, 8(5), 10.1016/j.jece.2020.104055.
Azeez, N. A., Dash, S. S., Gummadi, S. N., & Deepa, V. S. (2021). Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Chemosphere, 266, 129204. https://doi.org/10.1016/j.chemosphere.2020.129204
Chen, L., Yang, S., Zuo, X., Huang, Y., Cai, T., & Ding, D. (2018). Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chemical Engineering Journal, 354, 856–865. https://doi.org/10.1016/j.cej.2018.08.098
Chen, M., He, F., Hu, D., Bao, C., & Huang, Q. (2020). Broadened operating pH range for adsorption/reduction of aqueous Cr(VI) using biochar from directly treated jute (Corchorus capsularis L.) fibers by H3PO4. Chemical Engineering Journal, 381, 122739. https://doi.org/10.1016/j.cej.2019.122739
Chen, M., Wang, F., Zhang, D.-l., Yi, W.-m., & Liu, Y. (2021). Effects of acid modification on the structure and adsorption NH4+-N properties of biochar. Renewable Energy, 169, 1343–1350. https://doi.org/10.1016/j.renene.2021.01.098
Cheng, Y., Dong, H., & Hao, T. (2021). CaCO3 coated nanoscale zero-valent iron (nZVI) for the removal of chromium(VI) in aqueous solution. Separation and Purification Technology, 257, 117967. https://doi.org/10.1016/j.seppur.2020.117967
Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., & Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547. https://doi.org/10.1016/j.jhazmat.2021.126547
Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., & Fu, H. (2016). Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 309, 249–258. https://doi.org/10.1016/j.jhazmat.2015.04.013
Diao, Z. H., Du, J. J., Jiang, D., Kong, L. J., Huo, W. Y., Liu, C. M., Wu, Q. H., & Xu, X. R. (2018). Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism. Science of the Total Environment, 642, 505–515. https://doi.org/10.1016/j.scitotenv.2018.06.093
Dong, F. X., Yan, L., Zhou, X. H., Huang, S. T., Liang, J. Y., Zhang, W. X., Guo, Z. W., Guo, P. R., Qian, W., Kong, L. J., Chu, W., & Diao, Z. H. (2021). Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. Journal of Hazardous Materials, 416, 125930. https://doi.org/10.1016/j.jhazmat.2021.125930
Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., & Zeng, G. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86. https://doi.org/10.1016/j.jhazmat.2017.03.002
Dong, H., Li, L., Lu, Y., Cheng, Y., Wang, Y., Ning, Q., Wang, B., Zhang, L., & Zeng, G. (2019). Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environment International, 124, 265–277. https://doi.org/10.1016/j.envint.2019.01.030
Dou, X., Li, R., Zhao, B., & Liang, W. (2010). Arsenate removal from water by zero-valent iron/activated carbon galvanic couples. Journal of Hazardous Materials, 182(1-3), 108–114. https://doi.org/10.1016/j.jhazmat.2010.06.004
Fan, Z., Zhang, Q., Gao, B., Li, M., Liu, C., & Qiu, Y. (2019). Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention. Chemosphere, 217, 85–94. https://doi.org/10.1016/j.chemosphere.2018.11.009
Feng, Y., Wang, H., Xu, J., Du, X., Cheng, X., Du, Z., & Wang, H. (2021). Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo red from aqueous solution. Journal of Hazardous Materials, 416, 125777. https://doi.org/10.1016/j.jhazmat.2021.125777
Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z., & Liu, W. (2015). Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Advances, 5(44), 35107–35115. https://doi.org/10.1039/c5ra04416b
Gao, J., Wu, Z., Chen, L., Xu, Z., Gao, W., Jia, G., & Yao, Y. (2019). Synergistic effects of iron ion and PANI in biochar material for the efficient removal of Cr(VI). Materials Letters, 240, 147–149. https://doi.org/10.1016/j.matlet.2018.12.116
Gao, J., Yang, L., Liu, Y., Shao, F., Liao, Q., & Shang, J. (2018). Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar. Journal of the Taiwan Institute of Chemical Engineers, 91, 449–456. https://doi.org/10.1016/j.jtice.2018.06.033
Guo, Y., Zhang, Y., Zheng, D., Li, M., & Yue, J. (2020). Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. International Journal of Biological Macromolecules, 163, 927–933. https://doi.org/10.1016/j.ijbiomac.2020.07.009
Gupta, V. K., Pathania, D., Agarwal, S., & Sharma, S. (2013). Removal of Cr(VI) onto Ficus carica biosorbent from water. Environemental Science and Pollution Research, 20(4), 2632–2644. https://doi.org/10.1007/s11356-012-1176-6
Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342(1), 135–141. https://doi.org/10.1016/j.jcis.2009.09.065
Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 42(7), 2600–2605.
Hou, M., Wan, H., Liu, T., Fan, Y., Liu, X., & Wang, X. (2008). The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron. Applied Catalysis. B, Environmental, 84(1-2), 170–175. https://doi.org/10.1016/j.apcatb.2008.03.016
Jiahao, W., & Weiquan, C. (2020). One-step hydrothermal preparation of N-doped carbon spheres from peanut hull for efficient removal of Cr(VI). Journal of Environmental Engineering, 8(6). https://doi.org/10.1016/j.jece.2020.104449
Khalid, R., Aslam, Z., Abbas, A., Ahmad, W., Ramzan, N., & Shawabkeh, R. (2018). Adsorptive potential of Acacia nilotica based adsorbent for chromium(VI) from an aqueous phase. Chinese Journal of Chemical Engineering, 26(3), 614–622. https://doi.org/10.1016/j.cjche.2017.08.017
Khan, T. A., Saud, A. S., Jamari, S. S., Rahim, M. H. A., Park, J.-W., & Kim, H.-J. (2019). Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass and Bioenergy, 130, 105384. https://doi.org/10.1016/j.biombioe.2019.105384
Khawar, A., Aslam, Z., Javed, S., & Abbas, A. (2018). Pb(II) biosorption using DAP/EDTA-modified biopolymer (Chitosan). Chemical Engineering Communications, 205(11), 1555–1567. https://doi.org/10.1080/00986445.2018.1460598
Latif, A., Sheng, D., Sun, K., Si, Y., Azeem, M., Abbas, A., & Bilal, M. (2020). Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environmental Pollution, 264, 114728. https://doi.org/10.1016/j.envpol.2020.114728
Li, B., Zhang, Y., Xu, J., Xie, Z., Tang, J., Li, X., & Fan, S. (2021). Simultaneous carbonization, activation, and magnetization for producing tea waste biochar and its application in tetracycline removal from the aquatic environment. Journal of Environmental Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105324
Liu, X., Yang, L., Zhao, H., & Wang, W. (2020). Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: Simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Science of the Total Environment, 708, 134479. https://doi.org/10.1016/j.scitotenv.2019.134479
Luo, Z., Zhu, J., Yu, L., & Yin, K. (2021). Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects. Environmental Pollution, 287, 117628.
Lv, D., Zhou, J., Cao, Z., Xu, J., Liu, Y., Li, Y., Yang, K., Lou, Z., Lou, L., & Xu, X. (2019). Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere, 224, 306–315. https://doi.org/10.1016/j.chemosphere.2019.02.109
Lyu, H., Zhang, Q., & Shen, B. (2020). Application of biochar and its composites in catalysis. Chemosphere, 240, 124842. https://doi.org/10.1016/j.chemosphere.2019.124842
Ma, B., Yao, J., Chen, Z., Liu, B., Kim, J., Zhao, C., Zhu, X., Mihucz, V. G., Minkina, T., & Knudsen, T. S. (2022). Superior elimination of Cr(VI) using polydopamine functionalized attapulgite supported nZVI composite: Behavior and mechanism. Chemosphere, 287(Pt 1), 131970. https://doi.org/10.1016/j.chemosphere.2021.131970
Mao, Q., Zhou, Y., Yang, Y., Zhang, J., Liang, L., Wang, H., Luo, S., Luo, L., Jeyakumar, P., Ok, Y. S., & Rizwan, M. (2019). Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution. Journal of Hazardous Materials, 380, 120848. https://doi.org/10.1016/j.jhazmat.2019.120848
Mazaheri, H., Ghaedi, M., Ahmadi Azqhandi, M. H., & Asfaram, A. (2017). Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(ii) removal from a binary aqueous solution by natural walnut carbon. Physical Chemistry Chemical Physics, 19(18), 11299–11317. https://doi.org/10.1039/c6cp08437k
Mushtaq, S., Aslam, Z., Ali, R., Aslam, U., Naseem, S., Ashraf, M., & Bello, M. M. (2022). Surfactant modified waste ash for the removal of chloro and nitro group substituted benzene from wastewater. Water Science and Technology, 86(8), 1969–1980. https://doi.org/10.2166/wst.2022.324
Naseem, S., Aslam, H. M. Z., Abbas, A., Sumbal, S., Ali, R., & Usman, M. (2022). Synthesis and application of cobalt-based metal-organic framework for adsorption of humic acid from water. Chemical and Biochemical Engineering Quarterly, 36(1), 39–50. https://doi.org/10.15255/cabeq.2021.1960
Qiu, S., Chen, Z., Zhuo, H., Hu, Y., Liu, Q., Peng, X., & Zhong, L. (2019). Using FeCl3 as a solvent, template, and activator to prepare B, N Co-doping porous carbon with excellent supercapacitance. ACS Sustainable Chemistry & Engineering, 7(19), 15983–15994. https://doi.org/10.1021/acssuschemeng.9b02431
Qu, J., Wang, Y., Tian, X., Jiang, Z., Deng, F., Tao, Y., Jiang, Q., Wang, L., & Zhang, Y. (2021). KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials, 401, 123292. https://doi.org/10.1016/j.jhazmat.2020.123292
Qu, M., Chen, H., Wang, Y., Wang, X., Tong, X., Li, S., & Xu, H. (2021). Improved performance and applicability of copper-iron bimetal by sulfidation for Cr(VI) removal. Chemosphere, 281, 130820. https://doi.org/10.1016/j.chemosphere.2021.130820
Ruan, X., Sun, Y., Du, W., Tang, Y., Liu, Q., Zhang, Z., Doherty, W., Frost, R. L., Qian, G., & Tsang, D. C. W. (2019). Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technology, 281, 457–468. https://doi.org/10.1016/j.biortech.2019.02.105
Sadyrbaeva, T. Z. (2016). Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane—electrodialysis process. Chemical Engineering and Processing, 99, 183–191. https://doi.org/10.1016/j.cep.2015.07.011
Samiullah, M., Aslam, Z., Rana, A. G., Abbas, A., & Ahmad, W. (2018). Alkali-activated boiler fly ash for Ni(II) removal: Characterization and parametric study. Water, Air, and Soil Pollution, 229(4), 1–3. https://doi.org/10.1007/s11270-018-3758-5
Shang, J., Zong, M., Yu, Y., Kong, X., Du, Q., & Liao, Q. (2017). Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. Journal of Environmental Management, 197, 331–337. https://doi.org/10.1016/j.jenvman.2017.03.085
Shu, Y., Ji, B., Li, Y., Zhang, W., Zhang, H., & Zhang, J. (2021). Natural pyrite improved steel slag towards environmentally sustainable chromium reclamation from hexavalent chromium-containing wastewater. Chemosphere, 282, 130974. https://doi.org/10.1016/j.chemosphere.2021.130974
Wang, J. (2020). Study on the production technology of red oolong tea. Food Safety Guide. https://doi.org/10.16043/j.cnki.cfs.2020.03.111
Wang, P., Fu, F., & Liu, T. (2021). A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism. Chemosphere, 285, 131435. https://doi.org/10.1016/j.chemosphere.2021.131435
Wang, X. S., Chen, L. F., Li, F. Y., Chen, K. L., Wan, W. Y., & Tang, Y. J. (2010). Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. Journal of Hazardous Materials, 175(1-3), 816–822. https://doi.org/10.1016/j.jhazmat.2009.10.082
Wang, Y. P., Liu, Y. L., Tian, S. Q., Yang, J. J., Wang, L., & Ma, J. (2021). Straw biochar enhanced removal of heavy metal by ferrate. Journal of Hazardous Materials, 416, 126128. https://doi.org/10.1016/j.jhazmat.2021.126128
Wu, H., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). Ecotoxicology and Environmental Safety, 188, 109902. https://doi.org/10.1016/j.ecoenv.2019.109902
Xiao, K., Xu, F., Jiang, L., Duan, N., & Zheng, S. (2016). Resin oxidization phenomenon and its influence factor during chromium(VI) removal from wastewater using gel-type anion exchangers. Chemical Engineering Journal, 283, 1349–1356. https://doi.org/10.1016/j.cej.2015.08.084
Xu, Q., Hu, K., Wang, X., Wang, D., & Knudsen, M. T. (2019). Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach. Journal of Cleaner Production, 233, 782–792. https://doi.org/10.1016/j.jclepro.2019.06.136
Yang, J., Wang, S., Xu, N., Ye, Z., Yang, H., & Huangfu, X. (2021). Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract: Enhanced transport and application for hexavalent chromium removal from water and soil. Journal of Hazardous Materials, 419, 126461. https://doi.org/10.1016/j.jhazmat.2021.126461
Yang, J., Zhao, Y., Ma, S., Zhu, B., Zhang, J., & Zheng, C. (2016). Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environmental Science & Technology, 50(21), 12040–12047. https://doi.org/10.1021/acs.est.6b03743
Yu, J., Jiang, C., Guan, Q., Ning, P., Gu, J., Chen, Q., Zhang, J., & Miao, R. (2018). Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere, 195, 632–640. https://doi.org/10.1016/j.chemosphere.2017.12.128
Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J., & Chen, T. (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 166(2-3), 821–829. https://doi.org/10.1016/j.jhazmat.2008.11.083
Zeng, H., Zeng, H., Zhang, H., Shahab, A., Zhang, K., Lu, Y., Nabi, I., Naseem, F., & Ullah, H. (2021). Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. Journal of Cleaner Production, 286. https://doi.org/10.1016/j.jclepro.2020.124964
Zhang, Y., Jiao, X., Liu, N., Lv, J., & Yang, Y. (2020). Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar. Chemosphere, 245. https://doi.org/10.1016/j.chemosphere.2019.125542
Zhou, C., Han, C., Min, X., & Yang, T. (2022). Effect of different sulfur precursors on efficient chromium(VI) removal by ZSM-5 zeolite supporting sulfide nano zero-valent iron. Chemical Engineering Journal, 427. https://doi.org/10.1016/j.cej.2021.131515
Zhu, S., Ho, S.-H., Huang, X., Wang, D., Yang, F., Wang, L., Wang, C., Cao, X., & Ma, F. (2017). Magnetic nanoscale zerovalent iron assisted biochar: Interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673–9682. https://doi.org/10.1021/acssuschemeng.7b00542
Zhu, S., Wang, S., Yang, X., Tufail, S., Chen, C., Wang, X., & Shang, J. (2020). Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. Journal of Cleaner Production, 276, 123009. https://doi.org/10.1016/j.jclepro.2020.123009
Zhu, Y., Li, H., Zhang, G., Meng, F., Li, L., & Wu, S. (2018). Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresource Technology, 261, 142–150. https://doi.org/10.1016/j.biortech.2018.04.004
Zhuang, M., Wang, H., Qi, L., Cui, L., Quan, G., & Yan, J. (2021). Production of activated biochar via a self-blowing strategy-supported sulfidated nanoscale zerovalent iron with enhanced reactivity and stability for Cr(VI) reduction. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128108
Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M. A., & Gao, B. (2021). Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252. https://doi.org/10.1016/j.jhazmat.2021.125252
Funding
This work was financially supported by the team project of outstanding young and middle-aged Science and Technology Innovation group in Hubei Province (T201404) and scientific research program project from the Department of Education of Hubei Province (Q20211311).
Author information
Authors and Affiliations
Contributions
Yujie Mao: conceptualization, data analysis, data curation, and original draft writing. Xulin Zhang, Zhaopeng Chu, and Xinyi Zhang: data collection and samples determination. Yufang Tao: investigation and writing—review and editing. He Huang: supervision and writing—review and editing.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable
Consent to Participate
Not applicable
Consent for Publication
Not applicable
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1.
(PDF 1731 kb)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mao, Y., Tao, Y., Zhang, X. et al. Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism. Water Air Soil Pollut 234, 149 (2023). https://doi.org/10.1007/s11270-023-06164-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-023-06164-4