Skip to main content

Interactions of Moisture Content, pH, and HA on the Immobilization of Pb and Zn in Paddy Soil Using Magnetic-chitosan Hydrochar

Abstract

The pollution of composite heavy metals in paddy soil is a challenging issue, and there is little information on the interactions of typical environmental factors on hydrochar in-situ remediation of composite heavy metals. In the current research, the effects of three different environmental factors (moisture content, pH, and dissolved organic matter (DOM)) on magnetic-chitosan hydrochar (MCH) in-situ immobilized Pb and Zn in paddy soil with European Community Bureau of Reference (BCR) extraction method were investigated. Next, the interactions between different moisture content (70% and 100%), initial soil pH (6.5 and 8.0), and humic acid (HA) dosage (5% and 10%) were assessed using a second-order polynomial nonlinear fitting model. The BCR results indicated that increasing soil moisture content and pH successfully transformed exchangeable Pb and Zn into stable Pb and Zn and improved the immobilization efficiency of MCH for Pb and Zn. Besides, the percentage of residual Pb and Zn increased significantly as HA dosage increased from 0 to 5% after 60 days. However, there was an unremarkable change of residual Pb and Zn at 5% HA (65.8%, 67.9%) and 10% HA (65.2%, 65.9%), which indicated that 5% HA dosage was the most efficient. According to the fitting model, HA had a major impact on the growth rate of MCH-immobilized Pb and Zn. Additionally, there were great synergistic interactions among three factors in the immobilization of Pb and Zn using MCH. In particular, 5% HA promoted surface complexation, ion exchange, electrostatic adsorption, surface complexation, and precipitation, resulting in nearly 56.58% Pb and 37.66% Zn that were transformed from exchangeable into stable forms under high moisture and neutral conditions. In summary, HA played a crucial role in the process of MCH-immobilized Pb and Zn in soil, and there were synergistic interactions on the effective immobilization of Pb and Zn in paddy soil among HA and moisture content and initial pH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmad, S., Zhu, X. D., Wang, Q., Wei, X. C., & Zhang, S. C. (2021). Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb (II) removal. Journal of Analytical and Applied Pyrolysis, 160, 105330. https://doi.org/10.1016/j.jaap.2021.105330

    Article  CAS  Google Scholar 

  • Ai, Y. J., Zhao, C. F., Sun, L., Wang, X. K., & Liang, L. J. (2020). 'Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation'. Science of the Total Environment, 702, 135072. https://doi.org/10.1016/j.scitotenv.2019.135072

  • An, T. Y., Chang, Y. F., Xie, J. X., Cao, Q. F., Liu, Y. X., & Chen, C. J. (2022). Deciphering physicochemical properties and enhanced microbial electron transfer capacity by magnetic biochar. Bioresource Technology, 363, 127894. https://doi.org/10.1016/j.biortech.2022.127894

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    Article  CAS  Google Scholar 

  • Cao, Y., He, M. J., Dutta, S., Luo, G., Zhang, S. C., & Tsang, D. C. W. (2021). Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 152, 111722. https://doi.org/10.1016/j.rser.2021.111722

    Article  CAS  Google Scholar 

  • Chen, X. L., Li, F., Xie, X. J., Li, Z., & Chen, L. (2019). Nanoscale zero-valent iron and chitosan functionalized Eichhornia crassipes biochar for efficient hexavalent chromium removal. International Journal of Environmental Research and Public Health, 16, 15. https://doi.org/10.3390/ijerph16173046

    Article  CAS  Google Scholar 

  • Chen, H. B., Gao, Y. R., El-Naggar, A., Niazi, N. K., Sun, C. H., Shaheen, S. M., Hou, D. Y., Yang, X., Tang, Z. Y., Liu, Z. Z., Hou, H., Chen, W. F., Rinklebe, J., Pohorely, M., & Wang, H. L. (2022a). 'Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms'. Journal of Hazardous Materials, 425, 127971. https://doi.org/10.1016/j.jhazmat.2021.127971

  • Chen, Y. N., Qian, Y. K., Ma, J. X., Mao, M. J., Qian, L. P., & An, D. (2022). New insights into the cooperative adsorption behavior of Cr (VI) and humic acid in water by powdered activated carbon. Science of the Total Environment, 817, 153081. https://doi.org/10.1016/j.scitotenv.2022.153081

    Article  CAS  Google Scholar 

  • Chen, H. Y., Li, W. Y., Wang, J. J., Xu, H. J., Liu, Y. L., Zhang, Z., Li, Y. T., & Zhang, Y. L. (2019a). Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter'. Bioresource Technology, 292, 121948. https://doi.org/10.1016/j.biortech.2019.121948

  • Chen, X., Huang, S., Xie, X., Zhu, M., Li, J., Wang, X., & Pu, L. (2020). Enrichment, Source Apportionment and health risk assessment of soil potentially harmful elements associated with different land use in coastal tidelands reclamation area, Eastern China', International Journal of Environmental Research and Public Health, 17, 2822. https://doi.org/10.3390/ijerph17082822

  • Chin, J. F., Heng, Z. W., Teoh, H. C., Chong, W. C., & Pang, Y. L. (2022). Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater-modification, application and mechanism. Chemosphere, 291, 27. https://doi.org/10.1016/j.chemosphere.2021.133035

    Article  CAS  Google Scholar 

  • Deng, J. Q., Liu, Y. G., Liu, S. B., Zeng, G. M., Tan, X. F., Huang, B. Y., Tang, X. J., Wang, S. F., Hua, Q., & Yan, Z. L. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355–64. https://doi.org/10.1016/j.jcis.2017.07.069

    Article  CAS  Google Scholar 

  • dos Santos, F. H., Soares, M. B., & Alleoni, L. R. F. (2022). Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities. Journal of Environmental Management, 321, 116017. https://doi.org/10.1016/j.jenvman.2022.116017

    Article  CAS  Google Scholar 

  • Fakour, H., & Lin, T. F. (2014). Effect of humic acid on as redox transformation and kinetic adsorption onto iron oxide based adsorbent (IBA). International Journal of Environmental Research and Public Health, 11, 10710–10736. https://doi.org/10.3390/ijerph111010710

    Article  CAS  Google Scholar 

  • Gao, N., Du, W. Z., Zhang, M. Y., Ling, G. X., & Zhang, P. (2022). Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. International Journal of Biological Macromolecules, 209, 31–49. https://doi.org/10.1016/j.ijbiomac.2022.04.006

    Article  CAS  Google Scholar 

  • Gilmour, S. G., & Trinca, L. A. (2005). Fractional polynomial response surface models. J AGR BIOL ENVIR ST, 10, 50–60. https://doi.org/10.1198/108571105X29029

    Article  Google Scholar 

  • Goh, A. H. A., Ali, Z., Nor, N. M., Baharum, A., & Ahmad, W. (2017). "A quadratic regression modelling on paddy production in the area of perlis." In Proceedings of the 24TH National Symposium on Mathematical Sciences (SKSM24): Mathematical Sciences Exploration for the Universal Preservation. https://doi.org/10.1063/1.4995942

  • Han, J. H., Song, Y., Li, H. Y., Wang, Y. T., Zhang, L. K., Sun, P., Fan, J., & Li, Y. M. (2022). Preparation of novel magnetic porous biochar and its adsorption mechanism on cerium in rare earth wastewater. Ceramics International. https://doi.org/10.1016/j.ceramint.2022.11.165

    Article  Google Scholar 

  • He, X., NkohNkoh, J., Shi, R. Y., & Xu, R. K. (2022). Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium. Environmental Pollution, 313, 120175. https://doi.org/10.1016/j.envpol.2022.120175

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055

    Article  CAS  Google Scholar 

  • Ifthikar, J., Audrey Ngambia, X. J., Wang, T., Khan, A., Jawad, A., Xue, Q., Liu, L., & Chen, Z. Q. (2018). Facile one-pot synthesis of sustainable carboxymethyl chitosan – sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresource Technology, 262, 22–31. https://doi.org/10.1016/j.biortech.2018.04.053

    Article  CAS  Google Scholar 

  • Jiang, J., Xu, R. K., Jiang, T. Y., & Li, Z. (2012). Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229, 145–150. https://doi.org/10.1016/j.jhazmat.2012.05.086

    Article  CAS  Google Scholar 

  • Ke, T., Li, L., Rajavel, K., Wang, Z. Y., & Lin, D. H. (2018). “A multi-method analysis of the interaction between humic acids and heavy metal ions.” Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 53, 740–751. https://doi.org/10.1080/10934529.2018.1444971

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Li, H. G., Cao, M. J., Watson, J., Zhang, Y. H., & Liu, Z. D. (2021). In situ hydrochar regulates Cu fate and speciation: Insights into transformation mechanism. Journal of Hazardous Materials, 410, 124616. https://doi.org/10.1016/j.jhazmat.2020.124616

    Article  CAS  Google Scholar 

  • Lian, M. M., Feng, Q. Q., Wang, L. F., Niu, L. Y., Zhao, Z. S., Li, X. H., & Zhang, Z. J. (2019). Highly effective immobilization of Pb and Cd in severely contaminated soils by environment-compatible, mercapto-functionalized reactive nanosilica. Journal of Cleaner Production, 235, 583–589. https://doi.org/10.1016/j.jclepro.2019.07.015

    Article  CAS  Google Scholar 

  • Lu, K. P., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G. D., Chen, X., Zhang, X. K., Liu, D., Song, Z. L., Liu, X. Y., & Wang, H. L. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292. https://doi.org/10.1016/j.jenvman.2016.05.068

    Article  CAS  Google Scholar 

  • Ma, C., Liu, F. Y., Wei, M. B., Zhao, J. H., & Zhang, H. Z. (2020). Synthesis of novel core-shell magnetic Fe3O4@C nanoparticles with carboxyl function for use as an immobilisation agent to remediate lead-contaminated soils. Polish Journal of Environmental Studies, 29, 2273–83. https://doi.org/10.15244/pjoes/111232

    Article  CAS  Google Scholar 

  • Meng, Z. W., Huang, S., Lin, Z. B., Mu, W. T., Ge, H. M., & Huang, D. Y. (2022). Cadmium long-term immobilization by biochar and potential risks in soils with different pH under combined aging. Science of the Total Environment, 825, 154018. https://doi.org/10.1016/j.scitotenv.2022.154018

    Article  CAS  Google Scholar 

  • Mu, R. H., Liu, B., Chen, X., Wang, N., & Yang, J. (2020). Adsorption of Cu (II)and Co (II) from aqueous solution using lignosulfonate/chitosan adsorbent. International Journal of Biological Macromolecules, 163, 120–127. https://doi.org/10.1016/j.ijbiomac.2020.06.260

    Article  CAS  Google Scholar 

  • Mushtaq, S. O., Dahiya, P., Awasthi, A., & Yadav, C. S. (2022). Depletion in basic soil components and increased heavy metal load is associated with declined saffron growth in Kashmir valley region. Materials Today: Proceedings, 69, 1581–1586. https://doi.org/10.1016/j.matpr.2022.08.246

    Article  CAS  Google Scholar 

  • Ost ad-Ali-Askari, K. (2022). Management of risks substances and sustainable development. Applied Water Science, 12, 65. https://doi.org/10.1007/s13201021-01562-7

    Article  Google Scholar 

  • Ost ad-Ali-Askari et al. (2017), Chapter No.18: Deficit irrigation: Optimization models. Management of Drought and Water Scarcity. Handbook of Drought and Water Scarcity, Vol.3, pp: 373–389. Taylor & Francis Publisher. Imprint: CRC Press. eBook ISBN: 9781315226774. 1st Edition. https://doi.org/10.1201/9781315226774

  • Patiño, A. A. B., Lassalle, V. L., & Horst, M. F. (2021). Magnetic hydrochar nanocomposite obtained from sunflower husk: A potential material for environmental remediation. Journal of Molecular Structure, 1239, 130509. https://doi.org/10.1016/j.molstruc.2021.130509

    Article  CAS  Google Scholar 

  • Peng, Y. X., Zhang, S. R., Zhong, Q. M., Wang, G. Y., Feng, C., Xu, X. X., Pu, Y. L., & Guo, X. (2021). Removal of heavy metals from abandoned smelter contaminated soil with poly-phosphonic acid: Two-objective optimization based on washing efficiency and risk assessment. Chemical Engineering Journal, 421, 129882. https://doi.org/10.1016/j.cej.2021.129882

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. https://doi.org/10.1039/a807854h

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., & Frohne, T. (2016). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, 41–47. https://doi.org/10.1016/j.chemosphere.2015.03.067

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Abbas, T., Adrees, M., Zia-Ur-Rehman, M., Ibrahim, M., Abbas, F., Qayyum, M. F., & Nawaz, R. (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 206, 676–683. https://doi.org/10.1016/j.jenvman.2017.10.035

    Article  CAS  Google Scholar 

  • Sadiq, A. C., Rahim, N. Y., & Suah, F. B. M. (2020). Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. International Journal of Biological Macromolecules, 164, 3965–3973. https://doi.org/10.1016/j.ijbiomac.2020.09.029

    Article  CAS  Google Scholar 

  • Salam, A., Shaheen, S. M., Bashir, S., Imran Khan, J. X., Wang, J. R., Rehman, F. U., & Hu, H. Q. (2019). Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management, 237, 5–14. https://doi.org/10.1016/j.jenvman.2019.02.047

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H. L., Tsang, D. C. W., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. International Materials Reviews, 64, 216–247. https://doi.org/10.1080/09506608.2018.1473096

    Article  CAS  Google Scholar 

  • Trakal, L., Komarek, M., Szakova, J., Zemanova, V., & Tlustos, P. (2011). Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant, Soil and Environment, 57, 372–80. https://doi.org/10.17221/155/2011-PSE

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80, 935–940. https://doi.org/10.1016/j.chemosphere.2010.05.020

    Article  CAS  Google Scholar 

  • Wang, L. F., Wang, L. L., Ye, X. D., Li, W. W., Ren, X. M., Sheng, G. P., Yu, H. Q., & Wang, X. K. (2013). Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions. Environmental Science and Technology, 47, 5042–5049. https://doi.org/10.1021/es304993j

    Article  CAS  Google Scholar 

  • Wang, Y. Y., Ji, H. Y., Lyu, H. H., Liu, Y. X., He, L. L., You, L. C., Zhou, C. H., & Yang, S. M. (2019). “Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam After Amendment with Fe-Mn-Modified Biochar.” Journal of Cleaner Production, 231, 556–564. https://doi.org/10.1016/j.jclepro.2019.04.407

    Article  CAS  Google Scholar 

  • Wang, J., Chen, S., Xu, J. Y., Liu, L. C., Zhou, J. C., & Cai, J. J. (2021). High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture. New Carbon Materials, 36, 1081–1090. https://doi.org/10.1016/S1872-5805(21)60074-4

    Article  CAS  Google Scholar 

  • Wang, P., Gao, S., Chen, X. L., Yang, L., Wu, X. S., Feng, S. J., Hu, X. H., Liu, J., Xu, P., & Ding, Y. S. (2022). Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly(lactide)/poly (butylene adipate-co-terephthalate) composites. International Journal of Biological Macromolecules, 206, 661–669. https://doi.org/10.1016/j.ijbiomac.2022.02.183

    Article  CAS  Google Scholar 

  • Wang, Y. F., van Zwieten, L., Wang, H. L., Wang, L., Li, R. Z., Qu, J. H., & Zhang, Y. (2022). Sorption of Pb (II) onto biochar is enhanced through co-sorption of dissolved organic matter. Science of the Total Environment, 825, 11. https://doi.org/10.1016/j.scitotenv.2022.153686

    Article  CAS  Google Scholar 

  • Wang, Z. K., Liu, Q. H., & Yang, Z. M. (2022c). Nano magnetite-loaded biochar boosted methanogenesis through shifting microbial community composition and modulating electron transfer'. Science of the Total Environment 861, 160597. https://doi.org/10.1016/j.scitotenv.2022.160597

  • Wu, J. W., Wang, T., Wang, J. W., Zhang, Y. S., & Pan, W. P. (2021). A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 754, 142150. https://doi.org/10.1016/j.scitotenv.2020.142150

    Article  CAS  Google Scholar 

  • Wu, W. L., Liu, Z. H., Azeem, M., Guo, Z. Q., Li, R. H., Li, Y. G., Peng, Y. R., Ali, E. F., Wang, H. L., Wang, S. S., Rinklebe, J., Shaheen, S. M., & Zhang Z. Q., (2022) Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd (II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil'. Journal of Hazardous Materials, 437, 129330. https://doi.org/10.1016/j.jhazmat.2022.129330.

  • Xia, Y., Luo, H. N., Li, D., Chen, Z. L., Yang, S. S., Liu, Z. G., Yang, T. X., & Gai, C. (2020). Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. Environmental Pollution, 261, 9. https://doi.org/10.1016/j.envpol.2020.114217

    Article  CAS  Google Scholar 

  • Xia, Y., Meng, Y. H., Sun, Y. T., Deng, X. Y., Li, K., Liu, Z. G., & Miao, W. (2021). Facile one-step synthesis of attapulgite-hydrochar composite for in situ remediation of cadmium contaminated soils: Characterization, performance and mechanisms. Journal of Environmental Chemical Engineering, 9, 106841. https://doi.org/10.1016/j.jece.2021.106841

    Article  CAS  Google Scholar 

  • Xu, Y., Liang, X. F., Xu, Y. M., Qin, X., Huang, Q. Q., Wang, L., & Sun, Y. B. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere, 27, 193–204. https://doi.org/10.1016/S1002-0160(17)60310-2

    Article  CAS  Google Scholar 

  • Xu, X. Y., Wu, Y. H., Wu, X. K., Sun, Y. T., Huang, Z. L., Li, H., Wu, Z. J., Zhang, X., Qin, X., Zhang, Y. R., Deng, J. Q., & Huang, J. (2022). Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surfaces and Interfaces, 32, 102058. https://doi.org/10.1016/j.surfin.2022.102058

    Article  CAS  Google Scholar 

  • Yang, F., Du, Q., Sui, L., & Cheng, K. (2021). One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresource Technology, 328, 7. https://doi.org/10.1016/j.biortech.2021.124825

    Article  CAS  Google Scholar 

  • Ye, C., Yu, F. B., Huang, Y. Q., Hua, M. D., Zhang, S. C., & Feng, J. C. (2022). Hydrochar as an environment-friendly additive to improve the performance of biodegradable plastics. Science of the Total Environment, 832, 155124. https://doi.org/10.1016/j.scitotenv.2022.155124

    Article  CAS  Google Scholar 

  • Yi, R. W., Cai, W. Q., Dang, C. X., Han, B. W., Liu, L. Q., & Fan, J. J. (2020). Mild hydrothermal preparation of millimeter-sized carbon beads from chitosan with significantly improved adsorption stability for Cr (VI). Chemical Engineering Research and Design, 156, 43–53. https://doi.org/10.1016/j.cherd.2020.01.026

    Article  CAS  Google Scholar 

  • Yin, K., Wang, Q. N., Lv, M., & Chen, L. X. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

    Article  CAS  Google Scholar 

  • Yu, X. H., Liu, F., Lu, Y. T., & Yao, H. (2015). Current situation and evaluation of heavy metals in irrigation area of Tongliao. Journal of Beijing Jiaotong University, 39, 112–117.

    Google Scholar 

  • Yu, J. F., Tang, L., Pang, Y., Zeng, G. M., Wang, J. J., Deng, Y. C., Liu, Y. N., Feng, H. P., Chen, S., & Ren, X. Y. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146–159. https://doi.org/10.1016/j.cej.2019.01.163

    Article  CAS  Google Scholar 

  • Zhang, L. X., Tang, S. Y., He, F. X., Liu, Y., Mao, W., & Guan, Y. T. (2019). Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 378, 122215. https://doi.org/10.1016/j.cej.2019.122215

    Article  CAS  Google Scholar 

  • Zhang, H., Xiao, R., Li, R. H., Ali, A., Chen, A. L., & Zhang, Z. Q. (2020). Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues. Chemosphere, 261, 127694. https://doi.org/10.1016/j.chemosphere.2020.127694

    Article  CAS  Google Scholar 

  • Zhang, M., Wang, X., Liu, C., Lu, J., Qin, Y., Mo, Y., Xiao, P., & Liu, Y. (2020). “Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods-using Zhongwei city Ningxia, as an Example.” Environmental Science and Pollution Research, 27, 16203–16214. https://doi.org/10.1007/s11356-020-07986-z

    Article  CAS  Google Scholar 

  • Zhang, R. J., Liu, B. J., Ma, J., & Zhu, R. J. (2022). Preparation and characterization of carboxymethyl cellulose/chitosan/alginic acid hydrogels with adjustable pore structure for adsorption of heavy metal ions. European Polymer Journal, 179, 111577. https://doi.org/10.1016/j.eurpolymj.2022.111577

    Article  CAS  Google Scholar 

  • Zhao, K. Q., Yang, Y., Peng, H., Zhang, L. H., Zhou, Y. Y., Zhang, J. C., Du, C. Y., Liu, J. W., Lin, X., Wang, N. Y., Huang, H. L., & Luo, L. (2022). Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Science of the Total Environment, 822, 153483. https://doi.org/10.1016/j.scitotenv.2022.153483

    Article  CAS  Google Scholar 

  • Zhou, F. S., Wang, H., Fang, S. E., Zhang, W. H., & Qiu, R. L. (2015). Pb (II), Cr (VI) and atrazine sorption behavior on sludge-derived biochar: Role of humic acids. Environmental Science and Pollution Research, 22, 16031–16039. https://doi.org/10.1007/s11356-015-4818-7

    Article  CAS  Google Scholar 

  • Zhu, J. F., Gao, W. C., Ge, L., Zhao, W. T., Zhang, G. H., & Niu, Y. H. (2021). Immobilization properties and adsorption mechanism of nickel (II) in soil by biochar combined with humic acid-wood vinegar. Ecotoxicology and Environmental Safety, 215, 9. https://doi.org/10.1016/j.ecoenv.2021.112159

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 52270151), the Natural Science Foundation of Shanghai (No. 22ZR1401700), and the National Key Research and Development Program: Key Projects of International Scientific and Technological Innovation Cooperation Between Governments (2022YFE0120600).

Author information

Authors and Affiliations

Authors

Contributions

Ming Wu: conceptualization, formal analysis, methodology, data curation, writing – original draft. Yitong Dan: writing – reviewing and editing. Jing Miao: investigation and supervision. Xiaoxia Wang: validation, supervision. Feihong Liu: software. Wenjing Sang: funding acquisition, resources, writing – review and editing.

Corresponding author

Correspondence to Wenjing Sang.

Ethics declarations

Ethical Approval

No experimental animals were used in this study, and no bioethical issues were involved.

Consent to Participate

All the people involved in this work gave their consent to participate.

Consent for Publication

All the authors have given their consent for the publication of the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(32.5 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Dan, Y., Miao, J. et al. Interactions of Moisture Content, pH, and HA on the Immobilization of Pb and Zn in Paddy Soil Using Magnetic-chitosan Hydrochar. Water Air Soil Pollut 234, 104 (2023). https://doi.org/10.1007/s11270-023-06107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06107-z

Keywords

  • Magnetic-chitosan hydrochar
  • Immobilization
  • Pb
  • Zn
  • Typical environmental factors