Skip to main content
Log in

Evaluation of the Effects of Zero-Valent Iron Nanoparticles in the Treatment of Soils Polluted with Refinery Effluent Hydrocarbons

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are major environmental concerns due to their high carcinogenic properties and resistance to decomposition. These substances accumulate in the soil and reach living organisms through agriculture/leaching or dust sources. Zero-valent iron nanoparticles (ZVI NPs) have high regenerative power to remove environmental pollutants (such as PAHs) due to their extremely small size, specific surface area, and high reactivity. This study was conducted to investigate the effect of ZVI NPs on the removal of PAHs. The refinery effluent sample, control soil, and two soil samples in the effluent path were collected, followed by measuring the type and percentage of aromatic hydrocarbons and comparing the amount of pollution and its effect on the soil. PAH health risk assessment showed that the risk of carcinogenesis is higher through skin contact. The incremental lifetime cancer risk (ILCR) was possible in terms of carcinogenic risk (10−5–10−6). Next, two samples of the soil contaminated with iron NPs at three concentrations of 2.5, 5, and 10 g of NPs per 100 g of the soil were mixed. Then, each treatment was tested at 24, 48, and 72 h, and the amount of PAHs was obtained using a chromatogram. The results showed that the refinery effluent caused soil pollution in the route, and the concentration of 10% nanomaterials more than other concentrations led to a decrease in PAHs. In addition, the longer the iron NPs are in contact with the soil, the lower the amount of PAHs, and in some cases, it has reached zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amjadian, K., Sacchi, E., & Rastegari Mehr, M. (2016). Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region. Iraq. Environmental Monitoring and Assessment, 188(11), 1–16.

    CAS  Google Scholar 

  • Bozdogan Sert, E., Turkmen, M., & Cetin, M. (2019). Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey). Environmental Monitoring and Assessment, 191(9), 1–12.

    Article  Google Scholar 

  • Cai, Z., Fu, J., Du, P., Zhao, X., Hao, X., Liu, W., & Zhao, D. (2018). Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 332, 227–236.

    Article  CAS  Google Scholar 

  • Cesur, A., Zeren Cetin, I., Abo Aisha, A. E. S., Alrabiti, O. B. M., Aljama, A. M. O., Jawed, A. A., Cetin, M., Sevik, H., & Ozel, H. B. (2021). The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environmental Science and Pollution Research, 28(27), 35642–35648.

    Article  CAS  Google Scholar 

  • Cesur, A., Zeren Cetin, I., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, Air, & Soil Pollution, 233(6), 1–9.

    Article  Google Scholar 

  • Cetin, M., & Jawed, A. A. (2021). The chancing of Mg concentrations in some plants grown in pakistan depends on plant species and the growing environment. Kastamonu University Journal of Engineering and Sciences, 7(2), 167–174.

    Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022a). Determination and mapping of regional change of Pb and Cr pollution in Ankara City Center. Water, Air, & Soil Pollution, 233(5), 1–10.

    Article  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022b). Using topsoil analysis to determine and map changes in Ni Co pollution. Water, Air, & Soil Pollution, 233(8), 1–11.

    Article  Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., Senyel Kurkcuoglu, M. A., Kucukpehlivan, T., & Cabuk, A. (2022c). Examination of the change in the vegetation around the Kirka boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 233(7), 1–15.

    Article  Google Scholar 

  • Cetin, M., & Jawed, A. A. (2022). Variation of Ba concentrations in some plants grown in Pakistan depending on traffic density. Biomass Conversion and Biorefinery, 1–7.

  • Chang, M.-C., Shu, H.-Y., Hsieh, W.-P., & Wang, M.-C. (2005). Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. Journal of the Air & Waste Management Association, 55(8), 1200–1207.

    Article  CAS  Google Scholar 

  • Chen, Y.-H., & Li, F.-A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. Journal of Colloid and Interface Science, 347(2), 277–281.

    Article  CAS  Google Scholar 

  • Chen, F., Zeng, S., Ma, J., Zhu, Q., & Zhang, S. (2018). Degradation of para-nitrochlorobenzene by the combination of zero-valent iron reduction and persulfate oxidation in soil. Water, Air, & Soil Pollution, 229(10), 1–8.

    Article  Google Scholar 

  • Clemente, R., Walker, D. J., Roig, A., & Pilar Bernal, M. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation, 14(3), 199–205.

    Article  CAS  Google Scholar 

  • Dadkhah, A. A., & Akgerman, A. (2002). Hot water extraction with in situ wet oxidation: PAHs removal from soil. Journal of Hazardous Materials, 93(3), 307–320.

    Article  CAS  Google Scholar 

  • El Asri, S., Laghzizil, A., Saoiabi, A., Alaoui, A., El Abassi, K., M’hamdi, R., & Coradin, T. (2009). A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 350(1–3), 73–78.

    Article  Google Scholar 

  • EPA. (2003). Databases of innovative technologies. http://www.epa.gov/tio/databases

  • EPA. (2011). United Stats Environmental Protection Agncy.

  • Gao, Y., Zeng, Y., Shen, Q., Ling, W., & Han, J. (2009). Fractionation of polycyclic aromatic hydrocarbon residues in soils. Journal of Hazardous Materials, 172(2–3), 897–903.

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., Pérez, R. A., Alonso, J., Miguel, E., Diez-Pascual, S., & Lobo, M. C. (2022). Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Scientific Reports, 12(1), 3541. https://doi.org/10.1038/s41598-022-07558-w

    Article  CAS  Google Scholar 

  • Gomes, H. I., Dias-Ferreira, C., Ottosen, L. M., & Ribeiro, A. B. (2015). Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Chemosphere, 131, 157–163.

    Article  CAS  Google Scholar 

  • Hajatpour, Z., Davoudi, M., & Shahbazi, K. (2013). Remediation of pyrene–contaminated soils using nanozerovalent iron particles. Iranian Journal of Soil Research, 27(3), 405–414.

    Google Scholar 

  • Halek, F., Nabi, G., & Kavousi, A. (2008). Polycyclic aromatic hydrocarbons study and toxic equivalency factor (TEFs) in Tehran. Iran. Environmental Monitoring and Assessment, 143(1), 303–311.

    Article  CAS  Google Scholar 

  • Houben, D., & Sonnet, P. (2010). Leaching and phytoavailability of zinc and cadmium in a contaminated soil treated with zero-valent iron. Proceedings of the 19th World Congress of soil science, soil solutions for a changing World,

  • Johnston, C. T. (2010). Probing the nanoscale architecture of clay minerals. Clay Minerals, 45(3), 245–279.

    Article  CAS  Google Scholar 

  • Kazerouni, N., Sinha, R., Hsu, C.-H., Greenberg, A., & Rothman, N. (2001). Analysis of 200 food items for benzo [a] pyrene and estimation of its intake in an epidemiologic study. Food and Chemical Toxicology, 39(5), 423–436.

    Article  CAS  Google Scholar 

  • Kumari, B., & Singh, D. (2016). A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering, 97, 98–105.

    Article  Google Scholar 

  • Lal, R. (2007). Soil science and the carbon civilization. Soil Science Society of America Journal, 71(5), 1425–1437.

    Article  CAS  Google Scholar 

  • Li, M., & Luo, L. (2020). Review on application of nanomaterials in soil remediation. Journal of Physics: Conference Series,

  • Liao, C.-M., & Chiang, K.-C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63(9), 1610–1619.

    Article  CAS  Google Scholar 

  • Meiners, R. E., & Yandle, B. (1998). Common law environmentalism. Public Choice, 94(1), 49–66.

    Article  Google Scholar 

  • Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology, 26(7), 1278–1284.

    Article  CAS  Google Scholar 

  • Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicology and Environmental Safety, 187, 109838.

    Article  CAS  Google Scholar 

  • Mohammad Asgari, H., Mojiri-Forushani, H., & Mahboubi, M. (2022). Temporal and spatial pattern of dust storms, their polycyclic aromatic hydrocarbons, and human health risk assessment in the dustiest region of the world. Environmental Monitoring and Assessment, 195(1), 76. https://doi.org/10.1007/s10661-022-10703-7

    Article  Google Scholar 

  • Nasehi, S. A., Uromeihy, A., Morsali, A., & Nikudel, M. R. (2015). Use of nanoscale zero-valent iron to improve the shear strength parameters of gas oil contaminated clay.

  • Nasiri, J., Gholami, A., & Panahpour, E. (2013). Removal of cadmium from soil resources using stabilized zero-valent iron nanoparticles. Journal of Civil Engineering and Urbanism, 3(6), 338–341.

    Google Scholar 

  • Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.

    Article  CAS  Google Scholar 

  • Pasinszki, T., & Krebsz, M. (2020). Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials, 10(5), 917.

    Article  CAS  Google Scholar 

  • Paula, D., Jr., & Foresti, E. (2009). Sulfide toxicity kinetics of a UASB reactor. Brazilian Journal of Chemical Engineering, 26, 669–675.

    Article  CAS  Google Scholar 

  • Rizwan, M., Singh, M., Mitra, C. K., & Morve, R. K. (2014). Ecofriendly application of nanomaterials: Nanobioremediation. Journal of Nanoparticles, 2014.

  • Samsøe-Petersen, L., Larsen, E. H., Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental Science & Technology, 36(14), 3057–3063.

    Article  Google Scholar 

  • Saponaro, S., Bonomo, L., Petruzzelli, G., Romele, L., & Barbafieri, M. (2002). Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water, Air, and Soil Pollution, 135(1), 219–236.

    Article  CAS  Google Scholar 

  • Sevik, H., Cetin, M., Ozel, H. B., Ozel, S., & Zeren Cetin, I. (2020b). Changes in heavy metal accumulation in some edible landscape plants depending on traffic density. Environmental Monitoring and Assessment, 192(2), 1–9.

    Article  Google Scholar 

  • Sevik, H., Cetin, M., Ucun Ozel, H., Ozel, H. B., Mossi, M. M. M., & Zeren Cetin, I. (2020c). Determination of Pb and Mg accumulation in some of the landscape plants in shrub forms. Environmental Science and Pollution Research, 27(2), 2423–2431.

    Article  CAS  Google Scholar 

  • Sevik, H., Cetin, M., Ozel, H. B., Akarsu, H., & Zeren Cetin, I. (2020a). Analyzing of usability of tree-rings as biomonitors for monitoring heavy metal accumulation in the atmosphere in urban area: A case study of cedar tree (Cedrus sp.). Environmental monitoring and assessment, 192(1), 1–11.

  • Shao-feng, N., Yong, L., Xin-Hua, X., & Zhang-hua, L. (2005). Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Journal of Zhejiang University Science B, 6(10), 1022–1027.

    Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., & Kermani, M. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis. Iran. Science of the Total Environment, 505, 712–723.

    Article  CAS  Google Scholar 

  • Sorkheh, M., Asgari, H. M., Zamani, I., & Ghanbari, F. (2022). The relationship between dust sources and airborne bacteria in the southwest of Iran. Environmental Science and Pollution Research, 29(54), 82045–82063. https://doi.org/10.1007/s11356-022-21563-6

    Article  CAS  Google Scholar 

  • Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67(5), 998–1009.

    Article  CAS  Google Scholar 

  • Tafazoli, M., Hojjati, S. M., Biparva, P., Kooch, Y., & Lamersdorf, N. (2017). Reduction of soil heavy metal bioavailability by nanoparticles and cellulosic wastes improved the biomass of tree seedlings. Journal of Plant Nutrition and Soil Science, 180(6), 683–693.

    Article  CAS  Google Scholar 

  • Tajiki, F., Asgari, H. M., Zamani, I., & Ghanbari, F. (2022). Assessing the relationship between airborne fungi and potential dust sources using a combined approach. Environmental Science and Pollution Research, 29(12), 17799–17810. https://doi.org/10.1007/s11356-021-17028-x

    Article  Google Scholar 

  • Tuncan, A., & Pamukcu, S. (1992). Predicted mechanism of crude oil and marine clay interactions. Proceedings of the Environmental Geotechnology, May, 25–27.

  • USEPA (1991). Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals). EPA/540/R-92/003

  • Wang, W., Huang, M.-J., Kang, Y., Wang, H.-S., Leung, A. O., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by Behbahan Bidboland Gas Refinery under research grant contract No. 195286 dated 3 August 2021.

Author information

Authors and Affiliations

Authors

Contributions

Zeinab Babaei Ab Alvan conducted the experiments. Hossein Mohammad Asgari designed the study. Hossein Mohammad Asgari and Zeinab Babaei Ab Alvan analyzed the results. Hakimeh Amanipour and Fouad Bouazar reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Mohammad Asgari.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvan, Z.B.A., Asgari, H.M., Amanipoor, H. et al. Evaluation of the Effects of Zero-Valent Iron Nanoparticles in the Treatment of Soils Polluted with Refinery Effluent Hydrocarbons. Water Air Soil Pollut 234, 40 (2023). https://doi.org/10.1007/s11270-022-06041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-06041-6

Keywords

Navigation