Skip to main content
Log in

Treatment of Leachate of Landfills Using Filters of Ceramic Waste and Scrap Rubber Waste

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The toxic components of landfills are a major threat to the environment and human health. The present study investigates the impacts of ceramic and rubber waste on the leachate quality and treatment performance to eliminate harmful components. In this process, ten identical columns of waste rubber, ceramics, and geotextiles of different thicknesses were used as filter materials for the leachate. Then, a physic-chemical analysis was carried out on the filtered water. The results showed that the physical and chemical factors decrease with the increase in the thickness of the ceramic waste layer. Therefore, these physical and chemical parameters of the water generated from cells containing scrap rubber waste with dimensions of 0.2 mm are lower than those with dimensions of 4 mm. The permeability factor in the cells increases with the thickness of both types of scrap rubber waste. Column 4 gives good results on both physical and chemical parameters and permeability. Column 5 without scrap rubber waste gives better physical and chemical parameters but poor results in terms of permeability factor. The results showed that rubber waste and ceramic powder waste could be used as low-cost layers of leachate filters in landfills to mitigate negative environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdul Aziz, H., Daud, Z., Adlan, M. N., & Hung, Y. T. (2009). The use of polyaluminium chloride for removing colour, cod and ammonia from semi-aerobic leachate. International Journal of Environmental Engineering, 1(1), 20–35.

    Article  Google Scholar 

  • Ahmadzadeh, S., & Dolatabadi, M. (2018a). Modeling of electro Fenton process for removal of diazinon from groundwater using response surface methodology. Journal of Environmental Health Engineering, 5(2), 99–112.

    Article  Google Scholar 

  • Ahmadzadeh, S., & Dolatabadi, M. (2018b). Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. Journal of Molecular Liquids, 254(15), 76–82.

    Article  CAS  Google Scholar 

  • Alghamdi, A. G., Aly, A. A., & Ibrahim, H. M. (2021). Assessing the environmental impacts of municipal solid waste landfill leachate on groundwater and soil contamination in western Saudi Arabia. Arabian Journal of Geoscience, 14, 350. https://doi.org/10.1007/s12517-021-06583-9

    Article  CAS  Google Scholar 

  • Aydilek, A. H., Madden, E. T., & Demirkan, M. M. (2006). Field evaluation of a leachate collection system constructed with scrap tires. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 990–1000.

    Article  CAS  Google Scholar 

  • Balegh, B., Sellaf, H., & Hadjmostefa, A. (2020). Effect of ceramic waste on mechanical and geotechnical properties of tuff treated by cement. Case Studies in Construction Materials, 13, e00368.

    Article  Google Scholar 

  • Bhalla, G., Kumar, A., & Bansal, A. (2010). Performance of scrap tire shreds as a potential leachate collection medium. Geotechnical and Geological Engineering, 28(5), 661–669.

    Article  Google Scholar 

  • Bhalla, B., Saini, M. S., & Jha, M. K. (2014). Assessment of municipal solid waste landfill leachate treatment efficiency by leachate pollution index. International Journal of Innovative Science and Research Technology, 3(1), 8447–8454.

    Google Scholar 

  • Brennan, R., Healy, M. G., Morrison, L., Hynes, S., Norton, D., & Clifford, E. (2016). Management of landfill leachate: The legacy of European Union directives. Waste Management, 55, 355–363.

    Article  CAS  Google Scholar 

  • Darcy, H. (1856). determination des lois d'ecoulement de l'eau a travers le sable(in french).

  • Demdoum, A., Gueddouda, M. K., Goual, I., Souli, H., & Ghembaza, M. S. (2019). Effect of landfill leachate on the hydromechanicalbehavior of bentonite-geomaterials mixture. Construction and Building Materials, 234, 117356. https://doi.org/10.1016/j.conbuildmat.2019

    Article  Google Scholar 

  • Dolatabadi, M., Ghaneian, M. T., Wang, C., & Ahmadzadeh, S. (2021a). Electro-Fenton approach for highly efficient degradation of the herbicide 2,4-dichlorophenoxyacetic acid from agricultural wastewater: Process optimization, kinetic and mechanism. Journal of Molecular Liquids, 33, 116116. https://doi.org/10.1016/j.molliq.2021.116116

    Article  CAS  Google Scholar 

  • Dolatabadi, M., Świergosz, T., & Ahmadzadeh, S. (2021b). Electro-Fenton approach in oxidative degradation of dimethyl phthalate - the treatment of aqueous leachate from landfills. Science of the Total Environment, 772(10), 145323. https://doi.org/10.1016/j.scitotenv.2021.145323

    Article  CAS  Google Scholar 

  • Emenike, C. U., Fauziah, S. H., & Agamuthu, P. (2012). Characterization and toxicological evaluation of leachate from closed sanitary landfill. Waste Management & Research, 30(9), 888–897.

    Article  Google Scholar 

  • Faria, K.C.P., Holanda, J.N.F. (2012). Using sem/eds for characterization of clay ceramic bearingsugarcane bagasse ash waste, current microscopy contributions to advances in science and technology (a. Méndez-vilas, ed.).

  • Feng, S. J., & Gao, L. Y. (2009). Analysis of tension of geomembranes placed on landfill slopes. Geosynthetics in Civil and Environmental Engineering, 3(2), 558–563.

    Article  Google Scholar 

  • Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060

    Article  CAS  Google Scholar 

  • Ghafari, S., Aziz, H. A., & Bashir, M. J. K. (2010). The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate.A comparative study. Desalination, 257, 110–116.

    Article  CAS  Google Scholar 

  • Guo, Y., Cao, L., Feng, X., & Liu, H. (2019). Influence of leachate on properties and regions of compacted clay layer: A column experiment. Soil and Sediment Contamination, 28(7), 684–694.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed.). CRCPress.

    Google Scholar 

  • Kietlinska, A. (2004). Engineered wetlands and reactive bed filters for treatment of landfill leachate, Mark OchVatten. P. Xii, 21, Stockholm.

  • Koerner, R., & Koerner, G. (2013). Geotextile filter failures under challenging field conditions. Sound Geotechnical Research to Practice, 10, 272–289.

    Article  Google Scholar 

  • Kouassi, A. E., Ahoussi, K. E., Koffi, Y. B., Kouame, I. K., Soro, N., & Biemi, J. (2014). Caracterisation physico-chimique du lixiviat d’une decharge de l’afrique de l’ouest: Cas de la decharge d’akouedo (abidjan-coted’ivoire). Larhyss Journal (in French), 19(63), 1112–3680.

    Google Scholar 

  • Kulikowska, D., Zielinska, M., & Konopka, K. (2019). Treatment of stabilized landfill leachate in an integrated adsorption–fine-ultrafiltration system. International Journal of Environmental Science and Technology, 16, 423–430. https://doi.org/10.1007/s13762-018-1685-z

    Article  CAS  Google Scholar 

  • Ma, S., Zhou, C., Pan, J., Yang, G., Sun, G., Liu, Y., Chuang, X., Chen, X., Zhila, N., & Zhao, Z. (2022). Leachate from municipal solid waste landfills in a global perspective. Characteristics, influential factors and environmental risks. Journal of Cleaner Production, 333, 130234.

    Article  CAS  Google Scholar 

  • Maia Lins, E. A., ThoméJucá, J. F., MotaSilvaLins, C. M., & Barbosa Firmo, A. L. (2019). Proposition and evaluation of an experimental system of physical and chemical processes for treatment of leachate. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 58(1), 118–138.

    Google Scholar 

  • Mymrin, V., Ackbart, F. M., Alekseev, K., Avanci, M. A., Winter, E., Marinho, J. P. G., Alfredoiarozinski, N., & Rodrigo, E. (2019). Catai construction materials wastes use to neutralize hazardous municipal water treatment sludge. Construction and Building Materials, 204, 800–808.

    Article  CAS  Google Scholar 

  • Neskovicmarkic, D., Bjelic, D., Zugicdrakulic, N., Stevanoviccarapina, H., & Sobotpesic, Z. (2015). Assessment of the impact of Banjaluka landfill on groundwater quality. Carpathian Journal of Earth and Environmental Sciences, 12(8), 271–280.

    Google Scholar 

  • Prakash, A. (1996). Desorption of soil contaminants due to rainwater infiltration. Journal of Hydraulic Engineering, 122(9), 523–525.

    Article  Google Scholar 

  • Ren, Y. M., Ferraz, F., & Yuan, Q. (2018). Biological leachate treatment using anaerobic/aerobic process: Suspended growth-activated sludge versus aerobic granular sludge. International Journal of Environmental Science and Technology, 15, 2295–2302. https://doi.org/10.1007/s13762-017-1633-3

    Article  CAS  Google Scholar 

  • Rezayi, M., Karazhian, R., Abdollahi, Y., Narimani, L., Belin, S., Sany, T., Ahmadzadeh, S., & Yatimah, A. Y. (2014). Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Scientific Reports, 4, 1–8.

    Google Scholar 

  • Rowe, R. K., Asce, F., & Mcisaac, R. (2005). Clogging of tire shreds and gravel permeated with landfill leachate. Journal of Geotechnical and Geoenvironmental Engineering, 131(6), 682–693.

    Article  CAS  Google Scholar 

  • Sabnis, R.W. (2016). Handbook of acid-base indicators, 1st edition ebookisbn 9780429189043, CRC Press pages 416, bocaraton. https://doi.org/10.1201/9780849382192

  • San, O., & Özgür, C. (2007). Fabrication of glassy ceramic membrane filters for filtration of spring water with clogging phenomena. Journal of Membrane Science, 305, 169–175.

    Article  CAS  Google Scholar 

  • Sellaf, H., Trouzine, H., Hamhami, M., & Asroun, A. (2014). Geotechnical properties of rubber tires and sediments mixtures. Engineering, Technology & Applied Science Research, 4(2), 618–624.

    Article  Google Scholar 

  • Sellaf, H., Trouzine, H., & Asroun, A. (2017). Assessment of the performance of sediments and scrap rubber layers to filter the leachate of landfills. International Journal of Engineering Research in Africa, 35, 162–174.

    Article  Google Scholar 

  • Singh, U. K., Kumar, M., Chauhan, R., Jha, Pk., Ramanathan, A., & Subramanian, V. (2008). Assessment of the impact of landfill on groundwater quality: A case study of the pirana site in. Environmental Monitoring and Assessment, 141, 309–321.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Franklin, B.H., Stensel, D. (2003). Wastewater engineering: Treatment and reuse, Fourth Edition. Metcalf &Eddy, Inc.

  • Trouzine, H., Asroun, A., Belabdelouhab, F., & Long, N. T. (2011). Problematique des pneumatiques usages en algerie. Nature & Technologie in French, 5, 28–35.

    Google Scholar 

  • Trouzine, H., Bekhiti, M., & Asroun, A. (2012). Effects of scrap tire rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynthetics International, 19(2), 124–132.

    Article  Google Scholar 

  • Tsilogeorgis, J., Zouboulisa, A., Samaras, P., & Zamboulis, D. (2008). Application of a membrane sequencing batch reactor for landfill leachate treatment. Desalination, 221, 483–493.

    Article  CAS  Google Scholar 

  • Wu, Y., Wang, B., & Chen, G. (2020). Sustainable landfill leachate treatment. Waste Management & Research, 38(10), 1093–1100.

    Article  CAS  Google Scholar 

  • Zainol, N. A., Abdul Aziz, H., & Yusoff, M. S. (2012). Characterization of leachate from Kuala Sepetang and Kulim landfills: A comparative study. Energy & Environmental Science, 2(2), 45–52.

    Google Scholar 

  • Zielińska, M., Kulikowska, D., & Stańczak, M. (2020). Adsorption membrane process for treatment of stabilized municipal landfill leachate. Waste Management, 114(1), 174–182.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PRFU project code A01L02UN010120200004 and the Civil Engineering and Environmental Laboratory of the University of Sidi Bel Abbes, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benamar Balegh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balegh, B., Sellaf, H. Treatment of Leachate of Landfills Using Filters of Ceramic Waste and Scrap Rubber Waste. Water Air Soil Pollut 233, 526 (2022). https://doi.org/10.1007/s11270-022-06004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-06004-x

Keywords

Navigation