Skip to main content
Log in

A Critical Review on Iron-Enhanced Constructed Wetland System: Mechanisms and Application Scope

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Constructed wetland system (CWs), as an effective ecological technology to deal with water pollution, has the advantages of good load adaptability, simple construction process, and low maintenance cost. However, the technology has some bottlenecks such as low operating efficiency and low pollutant removal rate. Iron (Fe) is a non-toxic and non-polluting element widely distributed in the nature and closely related to the removal of pollutants. Applying iron materials in CWs can improve their pollutant removal rate. This paper summarizes the decontamination mechanisms and application status of CWs and introduces the application of iron materials and the mechanisms of iron materials in enhanced CWs. In addition, the application scope of iron-enhanced CWs and its shortcomings are given. The future development direction of iron-enhanced CWs is pointed out to provide new ideas for the subsequent optimization of CWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., et al. (2021). Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio, 50(1), 85–94. https://doi.org/10.1007/s13280-020-01318-8

    Article  Google Scholar 

  • Asensi, E., Alemany, E., Duque-Sarango, P., & Aguado, D. (2019). Assessment and modelling of the effect of precipitated ferric chloride addition on the activated sludge settling properties. Chemical Engineering Research and Design, 150, 14–25. https://doi.org/10.1016/j.cherd.2019.07.018

    Article  CAS  Google Scholar 

  • Ashraf, S., Afzal, M., Naveed, M., Shahid, M., & Zahir, Z. A. (2018). Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. International Journal of Phytoremediation, 20(2), 121–128. https://doi.org/10.1080/15226514.2017.1337072

    Article  CAS  Google Scholar 

  • Ávila, C., García-Galán, M. J., Borrego, C. M., Rodríguez-Mozaz, S., García, J., & Barceló, D. (2021). New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands. Science of the Total Environment, 755(P2), 142554. https://doi.org/10.1016/j.scitotenv.2020.142554

  • Calheiros, C. S. C., Rangel, A. O. S. S., & Castro, P. M. L. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Research, 41(8), 1790–1798. https://doi.org/10.1016/j.watres.2007.01.012

    Article  CAS  Google Scholar 

  • Cao, X., Jiang, L., Zheng, H., Liao, Y., Zhang, Q., Shen, Q., et al. (2022). Constructed wetlands for rural domestic wastewater treatment: A coupling of tidal strategy, in-situ bio-regeneration of zeolite and Fe(II)-oxygen denitrification. Bioresource Technology, 344(PB), 26185. https://doi.org/10.1016/j.biortech.2021.126185

  • Colares, G. S., Dell’Osbel, N., Wiesel, P. G., Oliveira, G. A., Lemos, P. H. Z., da Silva, F. P., et al. (2020). Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment,714(20), 136776. https://doi.org/10.1016/j.scitotenv.2020.136776

  • Dai, M. X., Li, Y. X., Li, P., Guo, W., Qi, X., Zhang, Y., & Kong, Q. (2020). Constructed wetland-microbial fuel cells enhanced with zero-valent iron for wastewater treatment and power generation. International Biodeterioration & Biodegradation, 153, 105048. https://doi.org/10.1016/J.IBIOD.2020.105048

    Article  CAS  Google Scholar 

  • de Queiroz, R. D. E. C. S., Lôbo, I. P., de Ribeiro, V. S., Rodrigues, L. B., & de Almeida Neto, J. A. (2020). Assessment of autochthonous aquatic macrophytes with phytoremediation potential for dairy wastewater treatment in floating constructed wetlands. International Journal of Phytoremediation, 22(5), 518–528. https://doi.org/10.1080/15226514.2019.1686603

    Article  CAS  Google Scholar 

  • Ding, X., Xue, Y., Zhao, Y., Xiao, W., Liu, Y., & Liu, J. (2018). Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands. Journal of Cleaner Production, 172, 541–551. https://doi.org/10.1016/j.jclepro.2017.10.170

    Article  CAS  Google Scholar 

  • Doherty, L., Zhao, Y., Zhao, X., & Wang, W. (2015). Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74–81. https://doi.org/10.1016/j.cej.2014.12.063

    Article  CAS  Google Scholar 

  • Feng, L., He, S., Yu, H., Zhang, J., Guo, Z., Wei, L., & Wu, H. (2022). A novel plant-girdling study in constructed wetland microcosms: Insight into the role of plants in oxygen and greenhouse gas transport. Chemical Engineering Journal, 431(P1), 133911. https://doi.org/10.1016/j.cej.2021.133911

  • Fletcher, D. E., Lindell, A. H., Stankus, P. T., Fletcher, N. D., Lindell, B. E., & McArthur, J. V. (2020). Metal accumulation in dragonfly nymphs and crayfish as indicators of constructed wetland effectiveness. Environmental Pollution, 256, 113387. https://doi.org/10.1016/j.envpol.2019.113387

  • Guo, Z., Kang, Y., Hu, Z., Liang, S., Xie, H., Ngo, H. H., & Zhang, J. (2020). Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon. Bioresource Technology, 311, 123481. https://doi.org/10.1016/j.biortech.2020.123481

  • Gupta, S., Srivastava, P., Patil, S. A., & Yadav, A. K. (2021). A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. Bioresource Technology, 320(PB), 124376. https://doi.org/10.1016/j.biortech.2020.124376

  • Hu, X., Wan, X., Tan, W., Xie, H., Zhuang, L., Zhang, J., et al. (2021). More is better? Constructed wetlands filled with different amount of Fe oxides showed opposite phosphorus removal performance. Journal of Cleaner Production, 329(20), 129749. https://doi.org/10.1016/j.jclepro.2021.129749

  • Huang, B., Chi, G., Chen, X., & Shi, Y. (2011). Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification. Bioresource Technology, 102(21), 10154–10157. https://doi.org/10.1016/j.biortech.2011.08.048

    Article  CAS  Google Scholar 

  • Huett, D. O., Morris, S. G., Smith, G., & Hunt, N. (2005). Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Research, 39(14), 3259–3272. https://doi.org/10.1016/j.watres.2005.05.038

    Article  CAS  Google Scholar 

  • Jesus, J. M., Danko, A. S., Fiúza, A., & Borges, M. T. (2018). Effect of plants in constructed wetlands for organic carbon and nutrient removal: A review of experimental factors contributing to higher impact and suggestions for future guidelines. Springer Verlag. https://doi.org/10.1007/s11356-017-0982-2

    Book  Google Scholar 

  • Jia, W., Sun, X., Gao, Y., Yang, Y., & Yang, L. (2020). Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. Science of the Total Environment, 740(20), 139534. https://doi.org/10.1016/j.scitotenv.2020.139534

  • Jiang, X., Tian, Y., Ji, X., Lu, C., & Zhang, J. (2020). Influences of plant species and radial oxygen loss on nitrous oxide fluxes in constructed wetlands. Ecological Engineering, 142, 105644. https://doi.org/10.1016/j.ecoleng.2019.105644

  • Kaifang, T., Lishan, Z., Jing, Z., Shan, Z., Junyong, L., Yuanshan, X., & Pin, G. (2020). Study on the treatment of endosulfan wastewater by iron-carbon micro-electrolysis coupled constructed wetland system. Industrial Water Treatment, 40(2), 28–31. https://doi.org/10.11894/iwt.2019-0295

    Article  Google Scholar 

  • Khan, N., Seshadri, B., Bolan, N., Saint, C. P., Kirkham, M. B., Chowdhury, S., et al. (2016). Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in agronomy, 138, 1-96 https://doi.org/10.1016/bs.agron.2016.04.002

  • Kong, F., Wang, J., Hou, W., Cui, Y., Yu, L., Zhang, Y., & Wang, S. (2022). Influence of modified biochar supported sulfidation of nano-zero-valent-iron (S-nZVI/BC) on nitrate removal and greenhouse gas emission in constructed wetland. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2022.02.040

    Article  Google Scholar 

  • Kong, Q., Guo, W., Sun, R., Qin, M., Zhao, Z., Du, Y., et al. (2021). Enhancement of chromium removal and energy production simultaneously using iron scrap as anodic filling material with pyrite-based constructed wetland-microbial fuel cell. Journal of Environmental Chemical Engineering, 9(6), 106630. https://doi.org/10.1016/j.jece.2021.106630

  • Kurniawan, S. B., Ahmad, A., Said, N. S. M., Imron, M. F., Abdullah, S. R. S., Othman, A. R., et al. (2021). Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Science of the Total Environment, 790(10), 148219. https://doi.org/10.1016/j.scitotenv.2021.148219

  • Leung, J. Y. S., Cai, Q., & Tam, N. F. Y. (2016). Comparing subsurface flow constructed wetlands with mangrove plants and freshwater wetland plants for removing nutrients and toxic pollutants. Ecological Engineering, 95, 129–137. https://doi.org/10.1016/j.ecoleng.2016.06.016

    Article  Google Scholar 

  • Li, X., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., et al. (2015). Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science and Technology, 49(19), 11560–11568. https://doi.org/10.1021/acs.est.5b03419

    Article  CAS  Google Scholar 

  • Li, P., Wang, A., Du, W., Mao, L., Wei, Z., Wang, S., et al. (2020). Insight into the interaction between Fe-based nanomaterials and maize (Zea mays) plants at metabolic level. Science of the Total Environment, 738(10), 139795. https://doi.org/10.1016/j.scitotenv.2020.139795

  • Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A. J., Ma, C., et al. (2021a). Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environmental Pollution, 269(15), 116134. https://doi.org/10.1016/j.envpol.2020.116134

  • Li, Xiang, Qin, Y., Jia, Y., Li, Y., Zhao, Y., Pan, Y., & Sun, J. (2021b). Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review. Chemosphere, 274, 129766. https://doi.org/10.1016/j.chemosphere.2021.129766

  • Li, C., Wang, H., Liao, X., Xiao, R., Liu, K., Bai, J., et al. (2022). Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. Journal of Hazardous Materials, 424(PA), 127312. https://doi.org/10.1016/j.jhazmat.2021.127312

  • Lin, F.-D., Song, X.-S., Zhao, Z.-M., Zhao, Y.-F., Wang, Y.-H., Dong, G.-Q., & Wang, B.-D. (2017). Analysis of the enhancement of denitrification efficiency in vertical flow constructed wetlands by supported nanoscale zero valent iron nZVI. Journal of Agro-Environment Science, 36(11), 2307–2313. https://doi.org/10.11654/jaes.2017-0546

    Article  Google Scholar 

  • Liu, X., Zhang, K., Fan, L., Luo, H., Jiang, M., Anderson, B. C., et al. (2018). Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment. Environmental Science and Pollution Research, 25(24), 24426–24444. https://doi.org/10.1007/s11356-018-2226-5

    Article  CAS  Google Scholar 

  • Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., & Tian, G. (2018). A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta, 178(1), 324–338. https://doi.org/10.1016/j.talanta.2017.08.033

  • Ma, Y., Dai, W., Zheng, P., Zheng, X., He, S., & Zhao, M. (2020). Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands. Journal of Hazardous Materials, 395(5), 122612. https://doi.org/10.1016/j.jhazmat.2020.122612

  • Mejia, J., Roden, E. E., & Ginder-Vogel, M. (2016). Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science and Technology, 50(7), 3580–3588. https://doi.org/10.1021/acs.est.5b05519

    Article  CAS  Google Scholar 

  • Ohore, O. E., Zhang, S., Guo, S., Addo, F. G., Manirakiza, B., & Zhang, W. (2021). Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland. Bioresource Technology, 323, 124574. https://doi.org/10.1016/j.biortech.2020.124574

  • Oliveira, M., Atalla, A. A., Frihling, B. E. F., Cavalheri, P. S., Migliolo, L., & Filho, F. J. C. M. (2019). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chemical Engineering Journal, 373, 458–467. https://doi.org/10.1016/j.cej.2019.05.064

    Article  CAS  Google Scholar 

  • Panwar, R. S., & Makvana, K. S. (2017). Reed-Phragmitis Karka based constructed wetland for the treatment of domestic wastewater in Ujjain city of central India. International Journal of Scientific Research in Biological Sciences, 4(4), 1–5. www.isroset.org

  • Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology and Innovation, 21, 101261. https://doi.org/10.1016/j.eti.2020.101261

  • Povidisa, K., Delefosse, M., & Holmer, M. (2009). The formation of iron plaques on roots and rhizomes of the seagrass Cymodocea serrulata (R. Brown) Ascherson with implications for sulphide intrusion. Aquatic Botany, 90(4), 303–308. https://doi.org/10.1016/j.aquabot.2008.11.008

    Article  CAS  Google Scholar 

  • Saba, B., Jabeen, M., Mahmood, T., & Aziz, I. (2014). Treatment comparison efficiency of microbial amended agro-waste biochar constructed wetlands for reactive black textile dye. International Conference on Food Engineering and Biotechnology, V65(3), 16–19. https://doi.org/10.7763/IPCBEE

  • Saeed, T., Afrin, R., Al-Muyeed, A., & Sun, G. (2012). Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere, 88(9), 1065–1073. https://doi.org/10.1016/j.chemosphere.2012.04.055

    Article  CAS  Google Scholar 

  • Saeed, T., Muntaha, S., Rashid, M., Sun, G., & Hasnat, A. (2018). Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. Journal of Cleaner Production, 189, 442–453. https://doi.org/10.1016/j.jclepro.2018.04.115

    Article  CAS  Google Scholar 

  • Sgroi, M., Pelissari, C., Roccaro, P., Sezerino, P. H., García, J., Vagliasindi, F. G. A., & Ávila, C. (2018). Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations. Chemical Engineering Journal, 332, 619–627. https://doi.org/10.1016/j.cej.2017.09.122

    Article  CAS  Google Scholar 

  • Sharma, R., & Malaviya, P. (2022). Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. Chemosphere, 290, 133358. https://doi.org/10.1016/j.chemosphere.2021.133358

  • Solano, M. L., Soriano, P., & Ciria, M. P. (2004). Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosystems Engineering, 87(1), 109–118. https://doi.org/10.1016/j.biosystemseng.2003.10.005

    Article  Google Scholar 

  • Song, X., Wang, S., Wang, Y., Zhao, Z., & Yan, D. (2016). Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands. Ecological Engineering, 91, 487–494. https://doi.org/10.1016/j.ecoleng.2016.03.013

    Article  Google Scholar 

  • Spangler, J. T., Sample, D. J., Fox, L. J., Owen, J. S., & White, S. A. (2019). Floating treatment wetland aided nutrient removal from agricultural runoff using two wetland species. Ecological Engineering, 127, 468–479. https://doi.org/10.1016/j.ecoleng.2018.12.017

    Article  Google Scholar 

  • Sudarsan, J. S., Subramani, S., Rajan, R. J., Shah, I., & Nithiyanantham, S. (2018). Simulation of constructed wetland in treating wastewater using fuzzy logic technique. Journal of Physics: Conference Series, 1000, 012137. https://doi.org/10.1088/1742-6596/1000/1/012137

  • Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Xu, Y., Zeng, G. ming, Hu, X. jiang, et al. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333. https://doi.org/10.1016/j.biortech.2016.04.093

  • Tao, W. (2018). Microbial removal and plant uptake of nitrogen in constructed wetlands: Mesocosm tests on influencing factors. Environmental Science and Pollution Research, 25(36), 36425–36437. https://doi.org/10.1007/s11356-018-3543-4

    Article  CAS  Google Scholar 

  • Tiwari, A., Mamedov, F., Grieco, M., Suorsa, M., Jajoo, A., Styring, S., et al. (2016). Photodamage of iron-sulphur clusters in photosystem i induces non-photochemical energy dissipation. Nature Plants, 2(4), 16035. https://doi.org/10.1038/NPLANTS.2016.35

  • Tunçsiper, B. (2019). Combined natural wastewater treatment systems for removal of organic matter and phosphorus from polluted streams. Journal of Cleaner Production, 228, 1368–1376. https://doi.org/10.1016/j.jclepro.2019.04.211

    Article  CAS  Google Scholar 

  • Tunçsiper, B. (2020). Nitrogen removal in an aerobic gravel filtration-sedimentation pond-constructed wetland-overland flow system treating polluted stream waters: Effects of operation parameters. Science of the Total Environment, 746, 140577. https://doi.org/10.1016/j.scitotenv.2020.140577

  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science and Technology, 45(1), 61–69. https://doi.org/10.1021/es101403q

    Article  CAS  Google Scholar 

  • Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Science of the Total Environment, 656, 270–279. https://doi.org/10.1016/j.scitotenv.2018.11.328

    Article  CAS  Google Scholar 

  • Wang, H., Xu, J., & Sheng, L. (2020a). Purification mechanism of sewage from constructed wetlands with zeolite substrates: A review. Journal of Cleaner Production, 258, 120760. https://doi.org/10.1016/j.jclepro.2020.120760

  • Wang, Xinyi, Zhu, H., Yan, B., Shutes, B., Bañuelos, G., & Wen, H. (2020b). Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants. Environment International, 138, 105628. https://doi.org/10.1016/j.envint.2020.105628

  • Wang, L., Yu, L., Xiong, Y., Li, Z., & Geng, J. (2021). Study on the governance of black-odor water in Chinese cities. Journal of Cleaner Production, 308(25), 127290. https://doi.org/10.1016/j.jclepro.2021.127290

  • Weng, X., Chen, Z., Chen, Z., Megharaj, M., & Naidu, R. (2014). Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 443, 404–409. https://doi.org/10.1016/j.colsurfa.2013.11.047

    Article  CAS  Google Scholar 

  • Wilfert, P., Kumar, S., Korving, L., Witkamp, G.-J., & van Loosdrecht, M. C. M. (2015). The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: A review. Environmental Science & Technology, 49(16), 9400-940014. https://doi.org/10.1021/acs.est.5b00150

  • Wu, C., Huang, L., Xue, S. G., Pan, W. S., Zou, Q., Hartley, W., & Wong, M. H. (2017). Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere, 168, 969–975. https://doi.org/10.1016/j.chemosphere.2016.10.114

    Article  CAS  Google Scholar 

  • Wu, S., Lv, T., Lu, Q., Ajmal, Z., & Dong, R. (2017). Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response. Science of the Total Environment, 580, 339–346. https://doi.org/10.1016/j.scitotenv.2016.11.138

    Article  CAS  Google Scholar 

  • Xiao, J., Huang, J., Huang, M., Chen, M., & Wang, M. (2020). Application of basalt fiber in vertical flow constructed wetland for different pollution loads wastewater: Performance, substrate enzyme activity and microorganism community. Bioresource Technology, 318, 124229. https://doi.org/10.1016/j.biortech.2020.124229

  • Xu, J., Liu, X., Lv, Y., Guo, X., & Lu, S. (2020). Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: Growth physiology, transportation, and microbial community. Ecotoxicology and Environmental Safety, 206(15), 111332. https://doi.org/10.1016/j.ecoenv.2020.111332

  • Xuan, Z., Chang, N.-B., Daranpob, A., & Wanielista, M. (2009). Initial test of a subsurface constructed wetland with green sorption media for nutrient removal in on-site wastewater treatment systems. Water Quality, Exposure and Health, 1(3–4), 159–169. https://doi.org/10.1007/s12403-009-0015-6

    Article  CAS  Google Scholar 

  • Yang, Y., Liu, J., Zhang, N., Xie, H., Zhang, J., Hu, Z., & Wang, Q. (2019). Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal. Ecotoxicology and Environmental Safety, 170, 446–452. https://doi.org/10.1016/j.ecoenv.2018.12.024

    Article  CAS  Google Scholar 

  • Yang, Yan, Zhao, Y., Tang, C., Xu, L., Morgan, D., & Liu, R. (2020). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chemical Engineering Journal, 392(15), 123708. https://doi.org/10.1016/j.cej.2019.123708

  • Yazdani, V., & Golestani, H. A. (2019). Advanced treatment of dairy industrial wastewater using vertical flow constructed wetlands. Desalination and Water Treatment, 162, 149–155. https://doi.org/10.5004/dwt.2019.24335

    Article  CAS  Google Scholar 

  • Yin, T., Te, S. H., Reinhard, M., Yang, Y., Chen, H., He, Y., & Gin, K. Y. H. (2018). Biotransformation of Sulfluramid (N-ethyl perfluorooctane sulfonamide) and dynamics of associated rhizospheric microbial community in microcosms of wetland plants. Chemosphere, 211, 379–389. https://doi.org/10.1016/j.chemosphere.2018.07.157

    Article  CAS  Google Scholar 

  • Zhang, T., Xu, D., He, F., Zhang, Y., & Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990–2010. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2012.06.022

    Article  Google Scholar 

  • Zhang, S., Song, H. L., Yang, X. L., Li, H., & Wang, Y. W. (2018). A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresource Technology, 256, 224–231. https://doi.org/10.1016/j.biortech.2018.02.023

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, X., Fu, C., Li, X., Yan, B., & Shi, T. (2019). Effect of Fe2+ addition on chemical oxygen demand and nitrogen removal in horizontal subsurface flow constructed wetlands. Chemosphere, 220, 259–265. https://doi.org/10.1016/j.chemosphere.2018.12.144

    Article  CAS  Google Scholar 

  • Zhao, Y., Cao, X., Song, X., Zhao, Z., Wang, Y., Si, Z., et al. (2018). Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VFCWs). Bioresource Technology, 267, 608–617. https://doi.org/10.1016/j.biortech.2018.07.072

    Article  CAS  Google Scholar 

  • Zhimiao, Z., Xiao, Z., Zhufang, W., Xinshan, S., Mengqi, C., Mengyu, C., & Yinjiang, Z. (2019). Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland. Bioresource Technology, 293, 122003. https://doi.org/10.1016/j.biortech.2019.122003

  • Zhu, F. M., Zhu, H. G., Shen, W. Y., & Chen, T. H. (2017). Integrating a tidal flow wetland with sweet sorghum for the treatment of swine wastewater and biomass production. Ecological Engineering, 101, 145–154. https://doi.org/10.1016/j.ecoleng.2017.01.021

    Article  Google Scholar 

  • Zhu, N., Jin, H., Ye, X., Liu, W., Li, D., Shah, G. M., & Zhu, Y. (2020). Fate and driving factors of antibiotic resistance genes in an integrated swine wastewater treatment system: From wastewater to soil. Science of the Total Environment, 721(15), 137654. https://doi.org/10.1016/j.scitotenv.2020.137654

  • Zou, Y. C., Lu, X. G., Yu, X. F., Jiang, M., & Guo, Y. (2011). Migration and retention of dissolved iron in three mesocosm wetlands. Ecological Engineering, 37(11), 1630–1637. https://doi.org/10.1016/j.ecoleng.2011.03.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciated the support from the National Natural Science Foundation of China (51909157), Open Foundation of Hebei Key Laboratory of Wetland Ecology and Conservation, and Shanghai River and Lake Biological Chain Construction and Resource Utilization Engineering Technology Research Center (20DZ2250700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimiao Zhao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Li, X., Jiao, X. et al. A Critical Review on Iron-Enhanced Constructed Wetland System: Mechanisms and Application Scope. Water Air Soil Pollut 233, 524 (2022). https://doi.org/10.1007/s11270-022-05985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05985-z

Keywords

Navigation