Skip to main content
Log in

Adsorption of Zn(II) on Pristine and SPLP/TCLP Leached Rice Straw Biochar: an Interplay of Precipitation and Ion Exchange

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The inorganic mineral content in biochar influences the adsorption of Zn(II) metal ions. Metal ion adsorption on mineral rich rice straw biochar is influenced upon washing. Rice straw slow pyrolysis biochar BC1-3, respectively, prepared at 400, 500, and 600 °C, were leached under Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) conditions to furnish BT1-3 and BS1-3, respectively. The Zn(II) adsorption studies were carried out for pH and dose optimization, initial concentration, isotherm fit, and kinetic studies. The Zn(II) adsorption by B(C/S/T)1–3 showed Langmuir and Freundlich isotherm, with pseudo-second-order kinetics at optimum pH 5 and dose 1 g/L. The adsorption of Zn(II) followed the trend BC3(qm 47 mg/g) > BC2 > BC1 > BS2 > BS1 > BS3 > BT2 > BT1 > BT3 (qm 3.5 mg/g), i.e., metal ion adsorption decreased with extent of leaching. The Zn(II) adsorption on biochar involved precipitation as dominant factor for metal ion adsorption on the biochars followed by ion exchange and proton exchange. The precipitation of Zn(II) ions in case of BC1-3 is attributed to the pH of biochar, which increases with proportion of minerals to organic content in biochar. In case of biochar BS1-3 and BT1-3, ion exchange and proton exchange mechanisms driven by demineralization are responsible for Zn(II) adsorption. The adsorption mechanism for Zn(II) on biochar is supported by XPS, solid state NMR studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and the supplementary information.

References

  • Ajjabi, L. C., & Chouba, L. (2009). Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 90(11), 3485–3489.

    CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

    CAS  Google Scholar 

  • Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294.

    CAS  Google Scholar 

  • Ayub, S., Siddique, A. A., Khursheed, M. S., Zarei, A., Alam, I., Asgari, E., & Changani, F. (2020). Removal of heavy metals, Cr, Cu, and Zn from electroplating wastewater by electrocoagulation and adsorption processes. Desalination and Water Treatment, 179(1), 263–271.

    CAS  Google Scholar 

  • Bhardwaj, A., Nag, S., Dahiya, A., Pandey, P., Arora, M., & Babu, J. N. (2022). Effect of pyrolysis temperature on mechanistic transformation for adsorption of methylene blue on leached rice‐straw biochar. Clean-Soil, Air, Water, 50(4), 2100108.

    CAS  Google Scholar 

  • Biswas, S., Sen, T. K., Yeneneh, A. M., & Meikap, B. C. (2019). Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn2+) adsorbent: Thermodynamics, process design, mass transfer and isotherm modelling. Separation Science and Technology, 54(7), 1106–1124.

    CAS  Google Scholar 

  • Boakye, P., Tran, H. N., Lee, D. S., & Woo, S. H. (2019). Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar. Journal of Environmental Management, 233, 165–174.

    CAS  Google Scholar 

  • Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759–769.

    CAS  Google Scholar 

  • Bogusz, A., Oleszczuk, P., & Dobrowolski, R. (2015). Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology, 196, 540–549.

    CAS  Google Scholar 

  • Boguta, P., Sokołowska, Z., Skic, K., & Tomczyk, A. (2019). Chemically engineered biochar—Effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel, 256, 115893.

    CAS  Google Scholar 

  • Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., & Huang, Z. (2018). Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 289–300.

    Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884.

    CAS  Google Scholar 

  • Cheung, W. H., Lau, S. S. Y., Leung, S. Y., Ip, A. W. M., & McKay, G. (2012). Characteristics of chemical modified activated carbons from bamboo scaffolding. Chinese Journal of Chemical Engineering, 20(3), 515–523.

    CAS  Google Scholar 

  • Das, S. K., Ghosh, G. K., & Avasthe, R. (2020). Biochar application for environmental management and toxic pollutant remediation. Biomass Conversion and Biorefinery, 1–12 https://doi.org/10.1007/s13399-020-01078-1

  • Deng, H., Li, Q., Huang, M., Li, A., Zhang, J., Li, Y., Li, S., Kang, C., & Mo, W. (2020). Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: Adsorption process and mechanisms. Water Science and Technology, 82(12), 2962–2974.

    CAS  Google Scholar 

  • Efome, J. E., Rana, D., Matsuura, T., & Lan, C. Q. (2018). Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 10(22), 18619–18629.

    CAS  Google Scholar 

  • García-Jaramillo, M., Trippe, K. M., Helmus, R., Knicker, H. E., Cox, L., Hermosín, M. C., Parsons, J. R., & Kalbitz, K. (2020). An examination of the role of biochar and biochar water-extractable substances on the sorption of ionizable herbicides in rice paddy soils. Science of the Total Environment, 706, 135682.

    Google Scholar 

  • Halli, P., Agarwal, V., Partinen, J., & Lundström, M. (2020). Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Separation and Purification Technology, 236, 116264.

    CAS  Google Scholar 

  • Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26(19), 19738–19748.

    CAS  Google Scholar 

  • Iamsaard, K., Weng, C. H., Yen, L. T., Tzeng, J. H., Poonpakdee, C., & Lin, Y. T. (2022). Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresource Technology, 344, 126131.

    CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2004). Adsorption of zinc on bed sediment of River Hindon: Adsorption models and kinetics. Journal of Hazardous Materials, 114(1–3), 231–239.

    CAS  Google Scholar 

  • Jayakumar, V., Govindaradjane, S., & Rajasimman, M. (2021). Efficient adsorptive removal of zinc by green marine macro alga Caulerpa scalpelliformis—Characterization, optimization, modeling, isotherm, kinetic, thermodynamic, desorption and regeneration studies. Surfaces Interfaces, 22, 100798.

    CAS  Google Scholar 

  • Jeyasubramanian, K., Thangagiri, B., Sakthivel, A., Raja, J. D., Seenivasan, S., Vallinayagam, P., Madhavan, D., Malathi Devi, S., & Rathika, B. (2021). A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel, 292, 120243.

    CAS  Google Scholar 

  • Khan, T. A., Mukhlif, A. A., & Khan, E. A. (2017). Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies. Egyptian Journal Basic and Applied Sciences, 4(3), 236–248.

    Google Scholar 

  • Kumar, M., Prasad, D., Mondal, M. K. (2021). Adsorption analysis of Zn(II) removal from aqueous solution onto Argemone maxicana biochar. Biomass Conversion Biorefinery, 1–14. https://doi.org/10.1007/s13399-021-01405-0

  • Lehmann, J., & Joseph, S. (Eds.). (2009). Biochar for environmental management, (Vol. 1). Earthscan.

    Google Scholar 

  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478.

    CAS  Google Scholar 

  • Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255–281.

    CAS  Google Scholar 

  • Liu, C., Wang, W., Wu, R., Liu, Y., Lin, X., Kan, H., & Zheng, Y. (2020). Preparation of acid-and alkali-modified biochar for removal of methylene blue pigment. ACS Omega, 5(48), 30906–30922.

    CAS  Google Scholar 

  • Liu, L., & Fan, S. (2018). Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environmental Science and Pollution Research, 25(9), 8688–8700.

    CAS  Google Scholar 

  • Manna, S., Singh, N., Purakayastha, T. J., & Berns, A. E. (2020). Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, 13(1), 1247–1258.

    CAS  Google Scholar 

  • Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255.

    CAS  Google Scholar 

  • Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling Organic Waste in Agriculture, 7(4), 269–276.

    Google Scholar 

  • Park, J. H., Wang, J. J., Kim, S. H., Cho, J. S., Kang, S. W., Delaune, R. D., Han, K. J., & Seo, D. C. (2017). Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloids and Surfaces A Physicochemical Engineering, 533, 330–337.

    CAS  Google Scholar 

  • Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., & Gidarakos, E. (2012). Adsorption of Cu, II ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96(1), 35–42.

    CAS  Google Scholar 

  • Qian, L., & Chen, B. (2014). Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. Journal of Agriculture and Food Chemistry, 62(2), 373–380.

    CAS  Google Scholar 

  • Qian, L., Chen, M., & Chen, B. (2015). Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes. Journal of Soils and Sediments, 15(5), 1130–1138.

    CAS  Google Scholar 

  • Qian, T., Wang, Y., Fan, T., Fang, G., & Zhou, D. (2016). A new insight into the immobilization mechanism of Zn on biochar: The role of anions dissolved from ash. Science and Reports, 6(1), 1–10.

    Google Scholar 

  • Qiao, H. T., Qiao, Y. S., Luo, X. H., Zhao, B. W., & Cai, Q. Y. (2021). Qualitative and quantitative adsorption mechanisms of zinc ions from aqueous solutions onto dead carp derived biochar. RSC Advances, 11(60), 38273–38282.

    CAS  Google Scholar 

  • Rajczykowski, K., Sałasińska, O., & Loska, K. (2018). Zinc removal from the aqueous solutions by the chemically modified biosorbents. Water, Air, and Soil Pollution, 229(1), 1–7.

    Google Scholar 

  • Sakhiya, A. K., Aier, I., Pathak, S., Anand, A., Jha, S., Vijay, V. K., & Kaushal, P. (2021). Copper(II) removal from aqua solution using rice straw derived biochar. Materials Today Proceedings, 43:740-745

  • Shen, Z., Hou, D., Jin, F., Shi, J., Fan, X., Tsang, D. C., & Alessi, D. S. (2019). Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 655, 751–758.

    CAS  Google Scholar 

  • Sia, G. B., Vernasqui, L. G., Consolin-Filho, N., Gonçalves, M. S., & Medeiros, F. V. D. S. (2022). Zinc adsorption from aqueous solution on biosorbent from urban pruning waste. Environmental Technology, 43(5), 728–736.

    CAS  Google Scholar 

  • Sing, K. S., & Williams, R. T. (2004). The use of molecular probes for the characterization of nanoporous adsorbents. Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems, 21(2), 71–79.

    CAS  Google Scholar 

  • Singh, R., Babu, J. N., Kumar, R., Srivastava, P., Singh, P., & Raghubanshi, A. S. (2015). Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. Ecological Engineering, 77, 324–347.

    Google Scholar 

  • Singh, R., Naik, D. V., Dutta, R. K., & Kanaujia, P. K. (2020). Biochars for the removal of naphthenic acids from water: A prospective approach towards remediation of petroleum refinery wastewater. Journal of Cleaner Production, 266, 121986.

    CAS  Google Scholar 

  • Song, J., Zhang, S., Li, G., Du, Q., & Yang, F. (2020). Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal. Journal of Hazardous Materials, 391, 121692.

    CAS  Google Scholar 

  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48.

    CAS  Google Scholar 

  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science & Biotechnology, 19(1), 191–215.

    CAS  Google Scholar 

  • Vaid, U., Mittal, S., & Babu, J. N. (2015). Influence of anion induced proton abstraction on Cu(II) adsorption by alginic acid. Reactive & Functional Polymers, 97, 48–55.

    CAS  Google Scholar 

  • Van Hien, N., Valsami-Jones, E., Vinh, N. C., Phu, T. T., Tam, N. T. T., & Lynch, I. (2020). Effectiveness of different biochar in aqueous zinc removal: Correlation with physicochemical characteristics. Bioresource Technology Reports, 11, 100466.

    Google Scholar 

  • Wang, L., Chen, Z., Yang, J., & Ma, F. (2015). Pb(II) biosorption by compound bioflocculant: Performance and mechanism. Desalination and Water Treatment, 53(2), 421–429.

    CAS  Google Scholar 

  • Wang, X., Jing, Y., Cao, Y., Xu, S., & Chen, L. (2019). Effect of chemical aging of Alternanthera philoxeroides-derived biochar on the adsorption of Pb(II). Water Science and Technology, 80(2), 329–338.

    CAS  Google Scholar 

  • Wang, Y., Zhang, Y., Li, S., Zhong, W., & Wei, W. (2018). Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. Journal of Molecular Liquids, 268, 658–666.

    CAS  Google Scholar 

  • Xu, Y., Bai, T., Yan, Y., Zhao, Y., Yuan, L., Pan, P., & Jiang, Z. (2020). Enhanced removal of hexavalent chromium by different acid-modified biochar derived from corn straw: Behavior and mechanism. Water Science and Technology, 81(10), 2270–2280.

    CAS  Google Scholar 

  • Yadav, R., Sharma, A. K., & Babu, J. N. (2016). Sorptive removal of arsenite [As (III)] and arsenate [As (V)] by fuller’s earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe0 loading on adsorption activity. Journal of Environmental Chemical Engineering, 4(1), 681–694.

    CAS  Google Scholar 

  • Yang, C., Miao, S., & Li, T. (2021). Influence of water washing treatment on Ulva prolifera-derived biochar properties and sorption characteristics of ofloxacin. Science and Reports, 11(1), 1–12.

    Google Scholar 

  • Yılmaz, O., & Tugrul, N. (2022). Zinc adsorption from aqueous solution using lemon, orange, watermelon, melon, pineapple, and banana rinds. Water Practice Technology, 17(1), 318–328.

    Google Scholar 

  • Zhang, P., Sun, H., Ren, C., Min, L., & Zhang, H. (2018). Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environmental Pollution, 234, 812–820.

    CAS  Google Scholar 

  • Zhang, X., Zhang, P., Yuan, X., Li, Y., & Han, L. (2020). Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology, 296, 122318.

    CAS  Google Scholar 

  • Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., Xu, Z., Tsang, D. C., & Qiu, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894.

    CAS  Google Scholar 

  • Zhou, D., Ghosh, S., Zhang, D., Liang, N., Dong, X., Wu, M., & Pan, B. (2016). Role of ash content in biochar for copper immobilization. Environmental Engineering Science, 33, 962–969.

    CAS  Google Scholar 

  • Zhou, K., Wu, Y., Zhang, X., Peng, C., Cheng, Y., & Chen, W. (2019). Removal of Zn (II) from manganese-zinc chloride waste liquor using ion-exchange with D201 resin. Hydrometallurgy, 190, 105171.

    CAS  Google Scholar 

Download references

Acknowledgements

AB is thankful to UGC for JRF fellowship. Authors are thankful to DST-FIST grant in Department of Environmental Science and Technology and Department of Chemistry. Authors are thankful to CIL, CUPB for ICP-MS, FTIR, AAS, and SEM analysis. Authors are also indebted to the NMR and XPS facility at CIF, IISER Trivandrum and IIC, IIT Roorkee, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AB—biochar treatment, adsorption experiments, writing the original draft, data interpretation, software analysis. SN—raw biochar preparation. KH—adsorption experiments. PP—reviewing and editing. MA—data interpretation and review. NJB—supervision, conceptualization, methodology, analysis, writing, editing, and review.

Corresponding author

Correspondence to J. Nagendra Babu.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Nag, S., Hussain, K. et al. Adsorption of Zn(II) on Pristine and SPLP/TCLP Leached Rice Straw Biochar: an Interplay of Precipitation and Ion Exchange. Water Air Soil Pollut 233, 475 (2022). https://doi.org/10.1007/s11270-022-05940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05940-y

Keywords

Navigation