Skip to main content
Log in

Infiltration Behavior of Ammonium and Phosphate in Runoff Through Soil Amended with Erythrina arborescens Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar, a promising exogenous material, is of great interest due to its ability to retain soil nutrients. Understanding the nutrient retention and release characteristics of biochar in soil is crucial to avoid environmental risks. In the current study, batch adsorption experiments were used to explore the adsorption capacity of ammonium (NH4+-N) and phosphate (PO43−-P) on Erythrina arborescens biochars produced at 300–700 °C. The biochar produced at 600 °C (BC600) was used to conduct the column leaching experiments under different addition ratios (0, 1%, 3%, 5%, and 10%) to evaluate the effects of biochar on nutrient leaching and soil quality over the short period of time. The results found that BC600 at different addition ratios owned the best adsorption ability to NH4+-N, and the highest removal rate was up to 49%. Column leaching experiments displayed that compared to pure soil, the introduction of 1% biochar could reduce the cumulative NH4+-N in the leachate by 30.7%. The adsorption of PO43−-P on different biochars was poor, and with the increase of biochar addition ratio, the phenomenon of negative PO43−-P removal rate appeared. Column leaching experiments found that when the biochar addition rate was 1%, the cumulative PO43−-P in the leachate was reduced by 12.9% compared to that in pure soil. Meanwhile, the application of BC600 in soil also improved soil pH, electrical conductivity, cation exchange capacity, and organic matter. These findings suggested that the application of Erythrina arborescens biochar with the appropriate ratio in soil could benefit to mitigate nutrient loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., & Yong, S. O. (2013). Production and use of biochar from buffalo-weed (Ambrosia trifida L) for trichloroethylene removal from water. Journal of Chemical Technology & Biotechnology, 89(1), 150–157.

    Article  Google Scholar 

  • Alling, V., Hale, S. E., Martinsen, V., Mulder, J., Smebye, A., Breedveld, G. D., & Cornelissen, G. (2014). The role of biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science, 177(5), 671–680.

    Article  CAS  Google Scholar 

  • Altland, J. E., & Locke, J. C. (2013). Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience, 48(11), 1397–1402.

    Article  CAS  Google Scholar 

  • Anyikude, K. U., Ross, A. B., Fletcher, L. A., Singh, S., & Takaya, C. A. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Environmental toxicology and risk assessment, 145, 518–527.

    Google Scholar 

  • Arias, C. A., Bubba, M., & Brix, H. (2001). Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research, 35(5), 1159–1168.

    Article  CAS  Google Scholar 

  • Asada, T., Ishihara, S., Yamane, T., Toba, A., Yamada, A., & Oikawa, K. (2002). Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. Journal of Health Science, 48(6), 473–479.

    Article  CAS  Google Scholar 

  • Boström, D., Skoglund, N., Grimm, A., Boman, C., Öhman, M., Broström, M., & Backman, R. (2011). Ash transformation chemistry during combustion of biomass. Energy & Fuels, 26(1), 85–93.

    Article  Google Scholar 

  • Bower, C., & Holm-Hansen, T. (1980). A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37, 794–798.

    Article  CAS  Google Scholar 

  • Cai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/desorption behavior and mechanism of NH4(+) by biochar as a nitrogen fertilizer sustained-release material. Journal of Agricultural Food & Chemistry, 64(24), 4958–4964.

    Article  CAS  Google Scholar 

  • Cao, Y., Jing, Y., Hao, H., & Wang, X. (2019). Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass. BioResources, 14(2), 4329–4343.

    Article  CAS  Google Scholar 

  • Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and their enhancement. In J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management (1st ed., pp. 67–84). Routledge

  • Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica Et Cosmochimica Acta, 72(6), 1598–1610.

    Article  CAS  Google Scholar 

  • Deluca, T. H., Mackenzie, M. D., & Gundale, M. J. (2009). Biochar effects on soil nutrient transformations. In J. Lehmann, & S. Joseph, (Eds.), Biochar for environmental management (1st ed.,  pp. 251–270). Routledge.

  • Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64(3), 237–256.

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Min, Y., & Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution, 213(1), 47–55.

    Article  CAS  Google Scholar 

  • Dong, D., Yang, M., Wang, C., Wang, H., Li, Y., Luo, J., & Wu, W. (2013). Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. Journal of Soils and Sediments, 13(8), 1450–1460.

    Article  CAS  Google Scholar 

  • Gao, L., Li, Z., Yi, W., Li, Y., & Wang, L. (2021). Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms. Journal of Environmental Chemical Engineering, 9(4), 105602.

    Article  CAS  Google Scholar 

  • Giron, R. P., Suarez-Ruiz, I., Ruiz, B., Fuente, E., & Gil, R. R. (2012). Fly ash from the combustion of forest biomass (Eucalyptus globulus Bark): Composition and physicochemical properties. Energy & Fuels, 26, 1540.

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review. Biology and Fertility of Soils, 35(4), 219–230.

    Article  CAS  Google Scholar 

  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379–420.

    Article  Google Scholar 

  • Jung, K. W., Kim, K., Jeong, T. U., & Ahn, K. H. (2016). Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024–1028.

    Article  CAS  Google Scholar 

  • Kammann, C. I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H. W., Conte, P., & Joseph, S. (2015). Erratum: Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports, 5, 11080.

    Article  Google Scholar 

  • Kanthle, A. K., Lenka, N. K., Lenka, S., & Tedia, K. (2016). Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil and Tillage Research, 157, 65–72.

    Article  Google Scholar 

  • Kastner, J. R., Miller, J., & Das, K. C. (2008). Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. Journal of Hazardous Materials, 164(2–3), 1420–1427.

    Google Scholar 

  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Kim, W. I., Kunhikrishnan, A., & Kim, K. H. (2017). Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste Biomass Valorization, 8(2), 483–492.

    Article  CAS  Google Scholar 

  • Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment, 505, 102–112.

    Article  CAS  Google Scholar 

  • Knowles, O. A., Robinson, B. H., Contangelo, A., & Clucas, L. (2011). Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Science of the Total Environment, 409(17), 3206–3210.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–535.

    Article  CAS  Google Scholar 

  • Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442.

    Article  CAS  Google Scholar 

  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Rd, B. A., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science & Technology, 44(20), 7970–7974.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357.

    Article  CAS  Google Scholar 

  • Lentz, R. D., & Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033–1043.

    Article  CAS  Google Scholar 

  • Li, X., Shen, Q., Zhang, D., Mei, X., Wei, R., Xu, Y., Yu, G., & Andrea, M. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS ONE, 8(6), 65949.

    Article  Google Scholar 

  • Li, J. Z., Zhang, Q. Z., Lou, Y. L., Zhang, L. M., Du, Z. L., Liu, X. R., & Wang, Y. D. (2015). Effects of biochar addition on nutrient leaching loss of typical tobacco-planting soils in Yunnan province, China. Journal of Agricultural Resources and Environment, 32(1), 48–53.

    Google Scholar 

  • Li, S., Zhang, Y., Yan, W., & Shangguan, Z. (2018). Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil & Tillage Research, 183, 100–108.

    Article  Google Scholar 

  • Liang, Y., Cao, X., Zhao, L., Xu, X., & Harris, W. (2014). Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. Journal of Environmental Quality, 43(4), 1504–1509.

    Article  Google Scholar 

  • Liu, H., Dong, Y., Wang, H., & Yun, L. (2010). Ammonium adsorption from aqueous solutions by strawberry leaf powder: Equilibrium, kinetics and effects of coexisting ions. Desalination, 263(1–3), 70–75.

    Article  CAS  Google Scholar 

  • Liu, W., Huo, R., Xu, J., Liang, S., Li, J., Zhao, T., & Wang, S. (2017). Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresource Technology, 235, 43–49.

    Article  CAS  Google Scholar 

  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of Environmental Quality, 41(4), 1076–1086.

    Article  CAS  Google Scholar 

  • Mandal, S., Donner, E., Smith, E., Sarkar, B., & Lombi, E. (2019). Biochar with near-neutral ph reduces ammonia volatilization and improves plant growth in a soil-plant system: A closed chamber experiment. Science of the Total Environment, 697, 134114.

    Article  CAS  Google Scholar 

  • Mikhailova, E. A., Noble, R. R. P., & Post, C. J. (2003). Comparison of soil organic carbon recovery by walkley-black and dry combustion methods in the russian chernozem. Communications in Soil Science & Plant Analysis, 34(13–14), 1853–1860.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193–194, 122–130.

    Article  Google Scholar 

  • Nguyen, B. T., Phan, B. T. P., Nguyen, T. X., Nguyen, V. N., Tran, T. V., & Bach, Q. V. (2019). Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. Journal of Soils and Sediments, 20(1), 297–307.

    Article  Google Scholar 

  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern Coastal Plain soil. Soil Science, 174(2), 105–112.

    Article  CAS  Google Scholar 

  • Pan, Y., She, D., Shi, Z., Chen, X., & Xia, Y. (2021). Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils? Environmental Science and Pollution Research, 28, 59974–59987.

    Article  CAS  Google Scholar 

  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil & Tillage Research, 112(2), 159–166.

    Article  Google Scholar 

  • Pratiwi, E. P. A., Hillary, A. K., Fukuda, T., & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 277, 61–68.

    Article  CAS  Google Scholar 

  • Qian, T. T., & Jiang, H. (2014). Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustainable Chemistry & Engineering, 2(6), 1411–1419.

    Article  CAS  Google Scholar 

  • Sarkhot, D. V., Ghezzehei, T. A., & Berhe, A. A. (2013). Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. Journal of Environmental Quality, 42(5), 1545–1554.

    Article  CAS  Google Scholar 

  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525.

    Article  CAS  Google Scholar 

  • Sorrenti, G., Ventura, M., & Toselli, M. (2016). Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. Journal of Plant Nutrition and Soil Science, 179(3), 336–346.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry: An overview. Environmental soil chemistry (2nd ed., pp. 1–42).

  • Tilly, C. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640.

    Article  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2010). Sorption of deisopropylatrazine on broiler litter biochars. Journal of Agricultural & Food Chemistry, 58(23), 12350–12356.

    Article  CAS  Google Scholar 

  • Uzoma, K. C., Inoue, M., Andry, H., Zahoor, A., & Nishihara, E. (2011). Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food Agriculture & Environment, 9(3–4), 1137–1143.

    CAS  Google Scholar 

  • Wang, G., Shen, L., & Sheng, C. (2012). Characterization of biomass ashes from power plants firing agricultural residues. Energy & Fuels, 26(1), 102–111.

    Article  Google Scholar 

  • Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T., & Guo, M. (2015a). Phosphorus release behaviors of poultry litter biochar as a soil amendment. Science of the Total Environment, 512–513, 454–463.

    Article  Google Scholar 

  • Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., & Deng, S. (2015b). Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−). Chemosphere, 119, 646–653.

    Article  CAS  Google Scholar 

  • Wang, Z., Jiang, Y., Awasthi, M. K., Wang, J., Yang, X., Amjad, A., Wang, Q., Lahori, A. H., & Zhang, Z. Q. (2018). Nitrate removal by combined heterotrophic and autotrophic denitrification processes: Impact of coexistent ions. Bioresource Technology, 250, 838–845.

    Article  CAS  Google Scholar 

  • Wendeborn, S. (2020). The chemistry, biology and modulation of ammonium nitrification in soil. Angewandte Chemie International Edition, 59, 2182–2202.

    Article  CAS  Google Scholar 

  • Woolf, D., & Lehmann, J. (2012). Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry, 111(1), 83–95.

    Article  CAS  Google Scholar 

  • Xu, Q., Qiu, Z., & Zhang, M. (2014). Effects of biochar application on transformation and chemical forms of C, N and P in soils with different pH. Journal of Zhejiang University, 40(3), 303–313.

    CAS  Google Scholar 

  • Xu, N., Tan, G., Wang, H., & Gai, X. (2016a). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 74, 1–8.

    Article  Google Scholar 

  • Xu, X., Kan, Y., Zhao, L., & Cao, X. (2016b). Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environmental Pollution, 213, 533–540.

    Article  CAS  Google Scholar 

  • Yao, F. X., Arbestain, M. C., Virgel, S., Blanco, F., Arostegui, J., Maciá-Agulló, J. A., & Macías, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80(7), 724–732.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47(15), 8700–8708.

    Article  CAS  Google Scholar 

  • Yin, Q., Zhang, B., Wang, R., & Zhao, Z. (2017). Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environmental Science and Pollution Research, 24(34), 26297.

    Article  CAS  Google Scholar 

  • Yoo, G., Kim, H., Chen, J., & Kim, Y. (2014). Effects of biochar addition on nitrogen leaching and soil structure following fertilizer application to rice paddy soil. Soil Fertility & Plant Nutrition, 78(3), 853–860.

    Google Scholar 

  • Yuan, H., Tao, L., Huang, H., Zhao, D., Kobayashi, N., & Yong, C. (2015). Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical & Applied Pyrolysis, 112, 284–289.

    Article  CAS  Google Scholar 

  • Zeng, Z., Zhang, S., Li, T., Zhao, F., He, Z., Zhao, H., Yang, X., Wang, H., Zhao, J., & Rafiq, M. T. (2013). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University SCIENCE B, 14, 1152–1161.

    Article  CAS  Google Scholar 

  • Zhang, H., Chen, C., Gray, E. M., Boyd, S. E., Yang, H., & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276, 1–6.

    Article  CAS  Google Scholar 

  • Zhang, C., Li, L., Zhao, M., Rong, H., & Ying, X. (2018). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25, 1–10.

    Google Scholar 

  • Zhang, M., Liu, Y., Wei, Q., & Gou, J. (2021). Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China. Ecotoxicology and Environmental Safety, 226, 112819.

    Article  CAS  Google Scholar 

  • Zhao, B., Xu, H., Zhang, T., Nan, X., & Ma, F. (2018). Effect of pyrolysis temperature on sulfur content, extractable fraction and release of sulfate in corn straw biochar. RSC Advance, 8(62), 35611–35617.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Technology Innovation and Application Demonstration of Chongqing Science and Technology Planning Project (Project No. cstc2018jscx-msybX0308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Nan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, H., An, Q. Infiltration Behavior of Ammonium and Phosphate in Runoff Through Soil Amended with Erythrina arborescens Biochar. Water Air Soil Pollut 233, 413 (2022). https://doi.org/10.1007/s11270-022-05883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05883-4

Keywords

Navigation