Skip to main content

Advertisement

Log in

Visible-Light Excitable CuO/Na-P-g-C3N4 Heterojunction Catalysts for Naphthalene Photodegradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper oxide deposited sodium and phosphorus co-modified g-C3N4 composite catalysts (CuO/Na-P-g-C3N4) were successfully designed and prepared by a facile thermal polycondensation and chemical deposition. The structural and photoelectrochemical properties of the prepared photocatalysts were studied by XRD, FT-IR, BET, SEM, TEM, EDX, XPS, UV-vis DRS, PL, and EIS techniques, and the photocatalytic performance in the naphthalene photodegradation under visible light irradiation was evaluated. The results showed that the successful construction of heterojunction structure would be formed between CuO and Na-P-g-C3N4 interfaces, and the most weak PL intensity for the (6%)CuO/Na-P-g-C3N4 sample with the lowest bandgap energy of 1.90 eV would be obtained. The (6%)CuO/Na-P-g-C3N4 sample exhibited highest naphthalene degradation among all the g-C3N4-based catalyst of 87.1% in 180 min owing to the promotion for the migration and separation of photoexcited electron and hole pairs. The photocatalytic degradation rate for the (6%)CuO/Na-P-g-C3N4 sample would not be significantly dropped after repeated use for 5 times. The excellent catalytic performance with good stability and durability suggested that it would be a potential candidate for the naphthalene photodegradation to protect the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author [author Zhou]. The data are not publicly available due to state restrictions e.g. “them containing information that could compromise research participant privacy/consent”.

References

  • An, W., Tian, L., Hu, J., Liu, L., Cui, W., & Liang, Y. (2020). Efficient degradation of organic pollutants by catalytic ozonation and photocatalysis synergy system using double-functional MgO/g-C3N4 catalyst. Applied Surface Science, 534, 147518.

    Article  CAS  Google Scholar 

  • Bae, H., Burungale, V., Na, W., Rho, H., Kang, S. H., Ryu, S., et al. (2021). Nanostructured CuO with a thin g-C3N4 layer as a highly efficient photocathode for solar water splitting. RSC Advances, 11(26), 16083–16089.

    Article  CAS  Google Scholar 

  • Chen, K., Zhang, S., Yan, J., Peng, W., Lei, D., & Huang, J. (2019). Excellent visible light photocatalytic efficiency of Na and S co-doped g-C3N4 nanotubes for H2 production and organic pollutant degradation. International Journal of Hydrogen Energy, 44(60), 31916–31929.

    Article  CAS  Google Scholar 

  • Chen, M., Guo, C., Hou, S., Lv, J., Zhang, Y., Zhang, H., & Xu, J. (2020). A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Applied Catalysis B: Environmental, 266, 118614.

    Article  CAS  Google Scholar 

  • Chu, Y., Lin, T., Lin, Y., Chiu, W., Nguyen, B., & Hu, C. (2020). Influence of P, S, O-Doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study. Carbon, 169, 338–348.

    Article  CAS  Google Scholar 

  • Gu, W., Li, Q., & Li, Y. (2020). Law and mechanism analysis of biodegradability of polychlorinated naphthalenes based on principal component analysis, QSAR models, molecular docking and molecular dynamics simulation. Chemosphere, 243, 125427.

    Article  CAS  Google Scholar 

  • Hosseini, H. S. M., SiavashMoakhar, R., Soleimani, F., Sadrnezhaad, S. K., Masudy-Panah, S., Katal, R., et al. (2020). One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting. Applied Surface Science, 530, 147271.

    Article  Google Scholar 

  • Huang, M., Li, J., Huang, Y., Zhou, X., Qin, Z., Tong, Z., et al. (2021). Construction of g-C3N4 based heterojunction photocatalyst by coupling TiO2-SnO2 solid solution for efficient multipurpose photocatalysis. Journal of Alloys and Compounds, 864, 158132.

    Article  CAS  Google Scholar 

  • Kang, J., Tang, Y., Wang, M., Jin, C., Liu, J., Li, S., et al. (2021). The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism. Journal of Environmental Chemical Engineering, 9(4), 105524.

    Article  CAS  Google Scholar 

  • Karthik, P., Naveen Kumar, T. R., & Neppolian, B. (2020). Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production. International Journal of Hydrogen Energy, 45, 7541–7551.

    Article  CAS  Google Scholar 

  • Kong, H. J., Won, D. H., Kim, J., & Woo, S. I. (2016). Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chemistry of Materials, 28(5), 1318–1324.

    Article  CAS  Google Scholar 

  • Koyyada, G., Siva Kumar, N., Al-Ghurabi, E. H., Asif, M., & Mallikarjuna, K. (2021). Enhanced solar-driven photocatalytic performance of a ternary composite of SnO2 quantum dots//AgVO3 nanoribbons//g-C3N4 nanosheets (0D/1D/2D) structures for hydrogen production and dye degradation. Environmental Science and Pollution Research, 28(24), 31585–31595.

    Article  CAS  Google Scholar 

  • Li, B., Wang, Y., Zeng, Y., & Wang, R. (2016). Synthesis of CuO micro-sphere combined with g-C3N4 using Cu2O as precursor for enhanced photocatalytic hydrogen evolution. Materials Letters, 178, 308–311.

    Article  CAS  Google Scholar 

  • Li, G., Wang, B., Zhang, J., Wang, R., & Liu, H. (2020). Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity. Chemical Engineering Journal, 391, 123500.

    Article  CAS  Google Scholar 

  • Li, H., Huang, G., Xu, H., Yang, Z., Xu, X., Li, J., et al. (2020). Enhancing photodegradation activity of g-C3N4 via decorating with S-doped carbon nitride quantum dots by in situ polymerization. Journal of Solid State Chemistry, 292, 121705.

    Article  CAS  Google Scholar 

  • Li, N., Liu, X., Zhou, J., Chen, W., & Liu, M. (2020). Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chemical Engineering Journal, 399, 125782.

    Article  CAS  Google Scholar 

  • Li, W., Wang, X., Li, M., He, S., Ma, Q., & Wang, X. (2020). Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Applied Catalysis B: Environmental, 268, 118384.

    Article  CAS  Google Scholar 

  • Liang, H., Bai, J., Xu, T., & Li, C. (2021). Enhancing photocatalytic performance of heterostructure MoS2/g-C3N4 embeded in PAN frameworks by electrospining process. Materials Science in Semiconductor Processing, 121, 105414.

    Article  CAS  Google Scholar 

  • Lisowski, P., Colmenares, J. C., Mašek, O., Lisowski, W., Lisovytskiy, D., Kamińska, A., et al. (2017). Dual functionality of TiO2 /biochar hybrid materials: Photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase. ACS Sustainable Chemistry & Engineering, 5(7), 6274–6287.

    Article  CAS  Google Scholar 

  • Lu, C., Chen, R., Wu, X., Fan, M., Liu, Y., Le, Z., et al. (2016). Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Applied Surface Science, 360, 1016–1022.

    Article  CAS  Google Scholar 

  • Ma, Z., Cui, Z., Lv, Y., Sa, R., Wu, K., & Li, Q. (2020). Three-in-One: Opened Charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping. International Journal of Hydrogen Energy, 45(7), 4534–4544.

    Article  CAS  Google Scholar 

  • Ma, D. N., Li, X. M., Wang, X. Q., & Luo, Y. J. (2021). Preparation of g-C3N4 nanosheets/CuO with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. European Journal of Inorganic Chemistry, 2021(10), 982–988.

    Article  CAS  Google Scholar 

  • Mao, L., Xue, X., Xu, X., Wen, W., Chen, M., Zhang, X., et al. (2021). Heterostructured CuO-g-C3N4 nanocomposites as a highly efficient photocathode for photoelectrochemical aflatoxin B1 sensing. Sensors and Actuators B: Chemical, 329, 129146.

    Article  CAS  Google Scholar 

  • Mohammadi, R., Gholipour, B., Alamgholiloo, H., Rostamnia, S., Mohtasham, H., Zonouzi, A., et al. (2021). Nano-construction of CuO nanorods decorated with g-C3N4 nanosheets (CuO/g-C3N4-NS) as a superb colloidal nanocatalyst for liquid phase C H conversion of aldehydes to amides. Journal of Molecular Liquids, 334, 116063.

    Article  CAS  Google Scholar 

  • Moradi, M., Hasanvandian, F., Isari, A. A., Hayati, F., Kakavandi, B., & Setayesh, S. R. (2021). CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Applied Catalysis B: Environmental, 285, 119838.

    Article  CAS  Google Scholar 

  • Muthukumar, H., Gire, A., Kumari, M., & Manickam, M. (2017). Biogenic synthesis of nano-biomaterial for toxic naphthalene photocatalytic degradation optimization and kinetics studies. International Biodeterioration & Biodegradation, 119, 587–594.

    Article  CAS  Google Scholar 

  • Navarro-Aguilar, A. I., Obregón, S., Sanchez-Martinez, D., & Hernández-Uresti, D. B. (2019). An efficient and stable WO3/g-C3N4 photocatalyst for ciprofloxacin and orange G degradation. Journal of Photochemistry and Photobiology A: Chemistry, 384, 112010.

    Article  CAS  Google Scholar 

  • Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302–11336.

    Article  CAS  Google Scholar 

  • Pham, X. N., Nguyen, H. T., Pham, T. N., Nguyen, T. T., Nguyen, M. B., Tran, V. T., et al. (2020). Green synthesis of H-ZSM-5 zeolite-anchored O-doped g-C3N4 for photodegradation of Reactive Red 195 (RR 195) under solar light. Journal of the Taiwan Institute of Chemical Engineers, 114, 91–102.

    Article  CAS  Google Scholar 

  • Qu, J., Du, Y., Feng, Y., Wang, J., He, B., Du, M., et al. (2020). Visible-light-responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of Rhodamine B and tetracycline. Materials Science in Semiconductor Processing, 112, 105023.

    Article  CAS  Google Scholar 

  • Raza, W., Bahnemann, D., & Muneer, M. (2017). Efficient visible light driven, mesoporous graphitic carbon nitrite based hybrid nanocomposite: With superior photocatalytic activity for degradation of organic pollutant in aqueous phase. Journal of Photochemistry and Photobiology A: Chemistry, 342, 102–115.

    Article  CAS  Google Scholar 

  • Sekar, A. D., Muthukumar, H., Chandrasekaran, N. I., & Matheswaran, M. (2018). Photocatalytic degradation of naphthalene using calcined Fe ZnO/ PVA nanofibers. Chemosphere, 205, 610–617.

    Article  CAS  Google Scholar 

  • Sharma, K., Raizada, P., Hosseini-Bandegharaei, A., Thakur, P., Kumar, R., Thakur, V. K., Nguyen, V., & Pardeep, S. (2020). Fabrication of efficient CuO/graphitic carbon nitride based heterogeneous photo-Fenton like catalyst for degradation of 2, 4 dimethyl phenol. Process Safety and Environmental Protection, 142, 63–75.

    Article  CAS  Google Scholar 

  • Shen, H., Li, M., Guo, W., Li, G., & Xu, C. (2020). P, K co-doped porous g-C3N4 with enhanced photocatalytic activity synthesized in vapor and self-producing NH3 atmosphere. Applied Surface Science, 507, 145086.

    Article  CAS  Google Scholar 

  • Sliem, M. A., Salim, A. Y., & Mohamed, G. G. (2019). Photocatalytic degradation of anthracene in aqueous dispersion of metal oxides nanoparticles: Effect of different parameters. Journal of Photochemistry and Photobiology A: Chemistry, 371, 327–335.

    Article  CAS  Google Scholar 

  • Tian, W., Li, N., & Zhou, J. (2016). A novel P-doped g-C3N4/Zn0.8Cd0.2S composite photocatalyst for degradation of methylene blue under simulated sunlight. Applied Surface Science, 361, 251–258.

    Article  CAS  Google Scholar 

  • Tonda, S., Kumar, S., Kandula, S., & Shanker, V. (2014). Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials Chemistry A, 2(19), 6772.

    Article  CAS  Google Scholar 

  • Valadez-Renteria, E., Barrera-Rendon, E., Oliva, J., & Rodriguez-Gonzalez, V. (2021). Flexible CuS/TiO2 based composites made with recycled bags and polystyrene for the efficient removal of the 4-CP pesticide from drinking water. Separation and Purification Technology, 270, 118821.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, Y., Li, Y., Shi, H., Xu, Y., Qin, H., et al. (2015). Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation. Catalysis Communications, 72, 24–28.

    Article  CAS  Google Scholar 

  • Wang, P., Guo, C., Hou, S., Zhao, X., Wu, L., Pei, Y., et al. (2018). Template-free synthesis of bubble-like phosphorus-doped carbon nitride with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 769, 503–511.

    Article  CAS  Google Scholar 

  • Wang, L., Zhu, Y., Yang, D., Zhao, L., Ding, H., & Wang, Z. (2019). The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: A visible-light-driven heterogeneous Fenton-like catalyst. Applied Surface Science, 488, 728–738.

    Article  CAS  Google Scholar 

  • Wang, M., Jin, C., Kang, J., Liu, J., Tang, Y., Li, Z., et al. (2021). CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chemical Engineering Journal, 416, 128118.

    Article  CAS  Google Scholar 

  • Wu, X., Wang, X., Xie, Y., Ren, N., Ma, J., & Ning, P. (2022). Facile in-situ construction of highly dispersed nano zero-valent iron modified black TiO2 Z-scheme recyclable heterojunction with highly efficient visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 310, 121325.

    Article  CAS  Google Scholar 

  • Yan, W., Zhang, R., Ji, F., & Jing, C. (2020). Deciphering co-catalytic mechanisms of potassium doped g-C3N4 in Fenton process. Journal of Hazardous Materials, 392, 122472.

    Article  CAS  Google Scholar 

  • Zada, A., Khan, M., Qureshi, M. N., Liu, S., & Wang, R. (2020). Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C3N4 with SnO2. Frontiers in Chemistry, 7, 941–948.

  • Zeng, G., Yang, R., Fu, X., Zhou, Z., Xu, Z., Zhou, Z., et al. (2021). Naphthalene degradation in aqueous solution by Fe(II) activated persulfate coupled with citric acid. Separation and Purification Technology, 264, 118441.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, P., Gong, Z., & Li, X. (2008). Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal of Hazardous Materials, 158(2–3), 478–484.

    Article  CAS  Google Scholar 

  • Zhang, W., Wei, C., Chai, X., He, J., Cai, Y., Ren, M., et al. (2012). The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant. Chemosphere, 88(2), 174–182.

    Article  CAS  Google Scholar 

  • Zhang, J., Hu, S., & Wang, Y. (2014). A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC Advances, 4(108), 62912–62919.

    Article  CAS  Google Scholar 

  • Zhang, S., Gao, H., Huang, Y., Wang, X., Hayat, T., Li, J., et al. (2018). Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environmental Science: Nano, 5(5), 1179–1190.

    CAS  Google Scholar 

  • Zhang, S., Li, H., Liu, P., Ma, L., Li, L., Zhang, W., et al. (2019). Directed self-assembly of MOF-derived nanoparticles toward hierarchical structures for enhanced catalytic activity in CO oxidation. Advanced Energy Materials, 9(48), 1901754.

    Article  CAS  Google Scholar 

  • Zhang, H., Tang, Y., Liu, Z., Zhu, Z., Tang, X., & Wang, Y. (2020). Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chemical Physics Letters, 751, 137467.

    Article  CAS  Google Scholar 

  • Zhang, Y., Shi, J., Huang, Z., Guan, X., Zong, S., Cheng, C., et al. (2020). Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight. Chemical Engineering Journal, 401, 126135.

    Article  CAS  Google Scholar 

  • Zheng, X., Zhang, Q., Chen, T., Wu, Y., Hao, J., Tan, C., et al. (2020). A novel synthetic carbon and oxygen doped stalactite-like g-C3N4 for broad-spectrum-driven indometacin degradation. Journal of Hazardous Materials, 386, 121961.

    Article  CAS  Google Scholar 

  • Zhou, S., Hou, M., Sun, Y., Zhao, W., Wang, H., Guo, Q., et al. (2021). Ultrahigh-performance visible-light photodegradation enabled by direct Z-scheme AgI/(Na, F)-C3N4 composites. Composites Part B: Engineering, 224, 109200.

    Article  CAS  Google Scholar 

  • Zhu, Y., Ren, T., & Yuan, Z. (2015). Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Applied Materials & Interfaces, 7(30), 16850–16856.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yin, C., Zhou, Z. et al. Visible-Light Excitable CuO/Na-P-g-C3N4 Heterojunction Catalysts for Naphthalene Photodegradation. Water Air Soil Pollut 233, 414 (2022). https://doi.org/10.1007/s11270-022-05882-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05882-5

Keywords

Navigation