Skip to main content
Log in

Pre-concentration of Municipal Wastewater Using Flocculation-Assisted Direct Ceramic Microfiltration Process: Optimization of Operational Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Direct ceramic microfiltration (DCMF) is an effective technology to pre-concentrate organic matter (OM) for the subsequent anaerobic energy-recovering processes and a fast, cost-effective, easy treatment process for municipal wastewater. The major problem in DCMF is the rapid fouling of the membrane. In this study, to maximize OM recovery rates and prevent membrane fouling, the DCMF process was alternately paired with dosing of a cationic polyacrylamide (PAM) flocculant and chemically enhanced primary sedimentation (CEPS). The DCMF process tested in three stages: (i) optimization of flocculant concentration (0.5, 1, 1.5, and 2 mg/L PAM) and dosing point, (ii) optimization of operational conditions (pH, filtration/backwash duration, flux, and recovery rate) to control membrane fouling, and (iii) long-term operation of the DCMF process. The influence of PAM dosage points on DCMF fouling behavior was explored, and system operating parameters in terms of OM recovery and TMP change were optimized. The CEPS + DCMF setup was discovered to be a potential option for overcoming fouling. The highest chemical oxygen demand (COD) was 520 ± 20 mg/L in the concentrated wastewater using CEPS + DCMF experiments for 0.5 mg/L PAM. The highest OM pre-concentration was achieved at 90% recovery rate. After the optimization, COD concentration in the concentrate of the DCMF process reached 822 mg/L for the long-term (20 days) operation. The net potential energy production was calculated as 0.28 kWh/m3 considering the theoretical COD of 1432 mg/L in the concentrate stream. As a novel approach, the CEPS + DCMF process can be used in place of conventional municipal wastewater treatment processes due to its acceptable OM removal performance, simple operation, small footprint, and potential energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aguilar, M. I., Sáez, J., Lloréns, M., Soler, A., & Ortuño, J. F. (2002). Nutrient removal and sludge production in the coagulation–flocculation process. Water Research, 36(11), 2910–2919.

    Article  CAS  Google Scholar 

  • Ahmad, A., Ismail, S., & Bhatia, S. (2005). Optimization of coagulation− flocculation process for palm oil mill effluent using response surface methodology. Environmental Science & Technology, 39(8), 2828–2834.

    Article  CAS  Google Scholar 

  • Ahmad, A., Wong, S., Teng, T., & Zuhairi, A. (2008). Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chemical Engineering Journal, 137(3), 510–517.

    Article  CAS  Google Scholar 

  • Aiyuk, S., Amoako, J., Raskin, L., van Haandel, A., & Verstraete, W. (2004). Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Research, 38(13), 3031–3042.

    Article  CAS  Google Scholar 

  • Alengebawy, A., Jin, K., Ran, Y., Peng, J., Zhang, X., & Ai, P. (2021). Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. Chemosphere, 267, 129197.

    Article  CAS  Google Scholar 

  • Amuda, O., & Alade, A. (2006). Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination, 196(1–3), 22–31.

    Article  CAS  Google Scholar 

  • APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA 21.

  • Arhin, S. G., Banadda, N., Komakech, A. J., Kabenge, I., Wanyama, J., Arhin, S. G., Banadda, N., Komakech, A. J., Kabenge, I., & Wanyama, J. (2016). Membrane fouling control in low pressure membranes, a review on pretreatment techniques for fouling abatement. Environmental Engineering Research, 21(2), 109–120.

    Article  Google Scholar 

  • Bezirgiannidis, A., Plesia-Efstathopoulou, A., Ntougias, S., & Melidis, P. (2019). Combined chemically enhanced primary sedimentation and biofiltration process for low cost municipal wastewater treatment. Journal of Environmental Science and Health, Part A, 54(12), 1227–1232.

    Article  CAS  Google Scholar 

  • Bielefeldt, A. R. (2009). Water Treatment, Industrial. Encyclopedia of Microbiology (Third Edition). M. Schaechter. Oxford, Academic Press, 569-586.

  • Campinas, M., Viegas, R. M. C., Silva, C., Lucas, H., & Rosa, M. J. (2021). Operational performance and cost analysis of PAC/ceramic MF for drinking water production, exploring treatment capacity as a new indicator for performance assessment and optimization. Separation and Purification Technology, 255, 117443.

    Article  CAS  Google Scholar 

  • Chakraborty, T., Balusani, D., Smith, S., Santoro, D., Walton, J., Nakhla, G., & Ray, M. B. (2020). Reusability of recovered iron coagulant from primary municipal sludge and its impact on chemically enhanced primary treatment. Separation and Purification Technology, 231, 115894.

    Article  CAS  Google Scholar 

  • Chong, M. F. (2012). Direct flocculation process for wastewater treatment. Advances in water treatment and pollution prevention, Springer, 201–230.

  • Czerwionka, K., Wilinska, A., & Tuszynska, A. (2020). The use of organic coagulants in the primary precipitation process at wastewater treatment plants. Water, 12(6), 1650.

    Article  CAS  Google Scholar 

  • Dai, W., Xu, X., Liu, B., & Yang, F. (2015). Toward energy-neutral wastewater treatment, a membrane combined process of anaerobic digestion and nitritation–anammox for biogas recovery and nitrogen removal. Chemical Engineering Journal, 279, 725–734.

    Article  CAS  Google Scholar 

  • Dang, T. T. H., Li, C.-W., & Choo, K.-H. (2016). Comparison of low-pressure reverse osmosis filtration and polyelectrolyte-enhanced ultrafiltration for the removal of Co and Sr from nuclear plant wastewater. Separation and Purification Technology, 157, 209–214.

    Article  CAS  Google Scholar 

  • De Feo, G., De Gisi, S., & Galasso, M. (2008). Definition of a practical multi-criteria procedure for selecting the best coagulant in a chemically assisted primary sedimentation process for the treatment of urban wastewater. Desalination, 230(1), 229–238.

    Article  CAS  Google Scholar 

  • Du, Y., Pennock, W. H., Weber-Shirk, M. L., & Lion, L. W. (2019). Observations and a geometric explanation of effects of humic acid on flocculation. Environmental Engineering Science, 36(5), 614–622.

    Article  CAS  Google Scholar 

  • Gong, H., Jin, Z., Wang, X., & Wang, K. (2015). Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration. Journal of Environmental Sciences, 32, 1–7.

    Article  Google Scholar 

  • Gruskevica, K., & Mezule, L. (2021). Cleaning methods for ceramic ultrafiltration membranes affected by organic fouling. Membranes, 11(2), 131.

    Article  CAS  Google Scholar 

  • Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., & Ozturk, I. (2019). Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics. Progress in Energy and Combustion Science, 70, 145–168.

    Article  Google Scholar 

  • Hafuka, A., Takahashi, T., & Kimura, K. (2020). Anaerobic digestibility of up-concentrated organic matter obtained from direct membrane filtration of municipal wastewater. Biochemical Engineering Journal, 161, 107692.

    Article  CAS  Google Scholar 

  • Hennecke, D., Bauer, A., Herrchen, M., Wischerhoff, E., & Gores, F. (2018). Cationic polyacrylamide copolymers (PAMs), environmental half life determination in sludge-treated soil. Environmental Sciences Europe, 30(1), 1–13.

    Article  CAS  Google Scholar 

  • Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F., & Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and Purification Technology, 79(3), 365–374.

    Article  CAS  Google Scholar 

  • Hög, A., Ludwig, J., & Beery, M. (2015). The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter. Journal of Water Process Engineering, 6, 129–135.

    Article  Google Scholar 

  • Huang, J.-C., & Li, L. (2000). An innovative approach to maximize primary treatment performance. Water Science and Technology, 42(12), 209–222.

    Article  CAS  Google Scholar 

  • Huang, B.-C., Guan, Y.-F., Chen, W., & Yu, H.-Q. (2017). Membrane fouling characteristics and mitigation in a coagulation-assisted microfiltration process for municipal wastewater pretreatment. Water Research, 123, 216–223.

    Article  CAS  Google Scholar 

  • Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery, A review. Science of the Total Environment, 710, 136375.

    Article  CAS  Google Scholar 

  • Ismail, I. M., Fawzy, A. S., Abdel-Monem, N. M., Mahmoud, M. H., & El-Halwany, M. A. (2012). Combined coagulation flocculation pre treatment unit for municipal wastewater. Journal of Advanced Research, 3(4), 331–336.

    Article  CAS  Google Scholar 

  • Jin, L., Ong, S. L., & Ng, H. Y. (2010). Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Water Research, 44(20), 5907–5918.

    Article  CAS  Google Scholar 

  • Jin, Z., Gong, H., Temmink, H., Nie, H., Wu, J., Zuo, J., & Wang, K. (2016). Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery. Chemical Engineering Journal, 292, 130–138.

    Article  CAS  Google Scholar 

  • Jin, Z., Meng, F., Gong, H., Wang, C., & Wang, K. (2017). Improved low-carbon-consuming fouling control in long-term membrane-based sewage pre-concentration, the role of enhanced coagulation process and air backflushing in sustainable sewage treatment. Journal of Membrane Science, 529, 252–262.

    Article  CAS  Google Scholar 

  • Jordao, E., & Volschan, I. (2004). Cost-effective solutions for sewage treatment in developing countries-the case of Brazil. Water Science and Technology, 50(7), 237–242.

    Article  CAS  Google Scholar 

  • Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almås, Å., & Singh, B. R. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46.

    Article  CAS  Google Scholar 

  • Kalboussi, N., Harmand, J., Rapaport, A., Bayen, T., Ellouze, F., & Amar, N. B. (2018). Optimal control of physical backwash strategy-towards the enhancement of membrane filtration process performance. Journal of Membrane Science, 545, 38–48.

    Article  CAS  Google Scholar 

  • Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., & Bae, J. (2011). Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environmental Science & Technology, 45(2), 576–581.

    Article  CAS  Google Scholar 

  • Kimura, K., Honoki, D., & Sato, T. (2017). Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater, up-concentration of organic matter for efficient energy recovery. Separation and Purification Technology, 181, 37–43.

    Article  CAS  Google Scholar 

  • Kimura, K., M. Yamakawa and A. Hafuka (2021). Direct membrane filtration (DMF) for recovery of organic matter in municipal wastewater using small amounts of chemicals and energy. Chemosphere, 130244.

  • Lateef, S. K., Soh, B. Z., & Kimura, K. (2013). Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. Bioresource Technology, 150, 149–155.

    Article  CAS  Google Scholar 

  • Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489–508.

    Article  CAS  Google Scholar 

  • Li, C., Sun, W., Lu, Z., Ao, X., & Li, S. (2020a). Ceramic nanocomposite membranes and membrane fouling. A Review. Water Research, 175, 115674.

    Article  CAS  Google Scholar 

  • Li, Y. Y., Lin, L., & Li, X. Y. (2020b). Chemically enhanced primary sedimentation and acidogenesis of organics in sludge for enhanced nitrogen removal in wastewater treatment. Journal of Cleaner Production, 244, 118705.

    Article  CAS  Google Scholar 

  • Lin, L., Li, R.-H., Li, Y., Xu, J., & Li, X.-Y. (2017). Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process Biochemistry, 54, 135–139.

    Article  CAS  Google Scholar 

  • Liu, T., Lian, Y., Graham, N., Yu, W., Rooney, D., & Sun, K. (2017). Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling, Role of floc structure and bacterial activity. Chemical Engineering Journal, 307, 41–48.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhu, X., Liang, P., Zhang, X., Kimura, K., & Huang, X. (2019). Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater, in terms of irremovable fouling. Journal of Membrane Science, 588, 117229.

    Article  CAS  Google Scholar 

  • Malkoske, T. A., Bérubé, P. R., & Andrews, R. C. (2020). Coagulation/flocculation prior to low pressure membranes in drinking water treatment, a review Environmental Science. Water Research & Technology, 6(11), 2993–3023.

    Article  CAS  Google Scholar 

  • McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer–can this be achieved? Environmental Science & Technology, 45, 7100–7106.

    Article  CAS  Google Scholar 

  • Mei, X., Quek, P. J., Wang, Z., & Ng, H. Y. (2017). Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor. Bioresource Technology, 240, 25–32.

    Article  CAS  Google Scholar 

  • Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shin, H.-S., & Yang, F. (2009). Recent advances in membrane bioreactors (MBRs), membrane fouling and membrane material. Water Research, 43(6), 1489–1512.

    Article  CAS  Google Scholar 

  • Mudhoo, A., & Kumar, S. (2013). Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. International Journal of Environmental Science and Technology, 10(6), 1383–1398.

    Article  CAS  Google Scholar 

  • Nair, A. T., & Ahammed, M. M. (2015). The reuse of water treatment sludge as a coagulant for post-treatment of UASB reactor treating urban wastewater. Journal of Cleaner Production, 96, 272–281.

    Article  CAS  Google Scholar 

  • Nascimento, T. A., Mejía, F. R., Fdz-Polanco, F., & Peña Miranda, M. (2017). Improvement of municipal wastewater pretreatment by direct membrane filtration. Environmental Technology, 38(20), 2562–2572.

    Article  CAS  Google Scholar 

  • Nascimento, T. A. and M. P. Miranda (2021). Control strategies for the long-term operation of direct membrane filtration of municipal wastewater. Journal of Environmental Chemical Engineering, 105335.

  • Oh, H., Takizawa, S., Ohgaki, S., Katayama, H., Oguma, K., & Yu, M. (2007). Removal of organics and viruses using hybrid ceramic MF system without draining PAC. Desalination, 202(1–3), 191–198.

    Article  CAS  Google Scholar 

  • Panepinto, D., Fiore, S., Zappone, M., Genon, G., & Meucci, L. (2016). Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Applied Energy, 161, 404–411.

    Article  CAS  Google Scholar 

  • Seib, M., Berg, K., & Zitomer, D. (2016). Low energy anaerobic membrane bioreactor for municipal wastewater treatment. Journal of Membrane Science, 514, 450–457.

    Article  CAS  Google Scholar 

  • Shewa, W. A., & Dagnew, M. (2020). Revisiting chemically enhanced primary treatment of wastewater, a review. Sustainability, 12(15), 5928.

    Article  CAS  Google Scholar 

  • Sills, D. L., Wade, V. L., & DiStefano, T. D. (2016). Comparative life cycle and technoeconomic assessment for energy recovery from dilute wastewater. Environmental Engineering Science, 33(11), 861–872.

    Article  CAS  Google Scholar 

  • Taboada-Santos, A., Rivadulla, E., Paredes, L., Carballa, M., Romalde, J., & Lema, J. M. (2020). Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations. Water Research, 169, 115258.

    Article  CAS  Google Scholar 

  • Wan, J., Gu, J., Zhao, Q., & Liu, Y. (2016). COD capture, a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports, 6(1), 1–9.

    Google Scholar 

  • Wang, S., Liu, C., & Li, Q. (2011). Fouling of microfiltration membranes by organic polymer coagulants and flocculants, controlling factors and mechanisms. Water Research, 45(1), 357–365.

    Article  CAS  Google Scholar 

  • Wang, S., Jena, U., & Das, K. C. (2018). Biomethane production potential of slaughterhouse waste in the United States. Energy Conversion and Management, 173, 143–157.

    Article  CAS  Google Scholar 

  • Wang, H., I. A. Fotidis and I. Angelidaki (2015). Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS microbiology ecology, 91(11).

  • Xu, S., Zhang, L., Huang, S., Zeeman, G., Rijnaarts, H., & Liu, Y. (2018). Improving the energy efficiency of a pilot-scale UASB-digester for low temperature domestic wastewater treatment. Biochemical Engineering Journal, 135, 71–78.

    Article  CAS  Google Scholar 

  • Xue, J., Zhang, Y., Liu, Y., & El-Din, M. G. (2016). Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane. Water Research, 88, 1–11.

    Article  CAS  Google Scholar 

  • Zhao, Y.-X., Li, P., Li, R.-H., & Li, X.-Y. (2019). Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes. Chemosphere, 223, 383–390.

    Article  CAS  Google Scholar 

  • Zhao, Y.-X., Li, P., Li, R.-H., & Li, X.-Y. (2020). Characterization and mitigation of the fouling of flat-sheet ceramic membranes for direct filtration of the coagulated domestic wastewater. Journal of Hazardous Materials, 385, 121557.

    Article  CAS  Google Scholar 

  • Zielińska, M., & Galik, M. (2017). Use of ceramic membranes in a membrane filtration supported by coagulation for the treatment of dairy wastewater. Water, Air, & Soil Pollution, 228(5), 1–12.

    Article  Google Scholar 

Download references

Funding

The Scientific and Technological Research Council of Turkey provided financial support (Project No.: 119Y134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigmet Uzal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, O., Sahinkaya, E. & Uzal, N. Pre-concentration of Municipal Wastewater Using Flocculation-Assisted Direct Ceramic Microfiltration Process: Optimization of Operational Conditions. Water Air Soil Pollut 233, 420 (2022). https://doi.org/10.1007/s11270-022-05872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05872-7

Keywords

Navigation