Skip to main content

Advertisement

Log in

Humic Acids Derived from Lignocellulosic Biomass: Characterization and Utilizing for Environmental Applications

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The goal of this research is to evaluate waste lignocellulosic materials for the production humic acid (HA) as a natural, low-cost, and effective adsorbent for heavy metals (Ni, Cr, and Cu) removal from aqueous medium. The fourier transform infrared (FTIR) spectroscopy, fluoresence spectroscopy, LC-ESI-TOF/MS, and stable carbon isotopes analysis were applied to compare the chemical structure of humic acids obtained from wheat straw (C3) and corn straw (C4). The adsorption efficiency of humic acids obtained from different lignocellulosic sources was investigated and compared to the commercial HA. The adsorption efficiency for Cu ions was almost 70% and the metal adsorption capacity of corn-HA is remarkably higher than commercial HA. Ni ions exhibited the lowest adsorption percentage for which the removal reached 21.0% with corn-HA. This work showed that lignocellulosic-derived humic acids are suitable adsorbent for heavy metals and can be used for cleaning of waters or other systems with low concentrations of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  • Ahmed, O. H., Husni, M. H. A., Anuar, A. R., Hanafi, M. M., & Angela, E. D. S. (2005). A modified way of producing humic acid from composted pineapple leaves. Journal of Sustainable Agriculture and Environment, 25(1), 129–139.

    Article  Google Scholar 

  • Aoyama, M. (2001). Do humic substances exhibit fluorescence? Understanding and managing organic matter in soils, sediments and waters. Proceeding of the 9 th International Conference of the International Humic Substances Society University of Adelaide, Adelaide, Australia, 21 st– 25st September 1998. Editors R.S. Swift and K.M. Spark.

  • ASTM Standart D–1102–84 (2013) Standard test method for ash in wood. Retrieved December 15, 2021, from www.astm.org.

  • ASTM Standart D-2016-74 (1983). Methods of test for moisture content of wood. Retrieved November, 2021, from www.astm.org.

  • Başçetinçelik, A., Öztürk, H. H., Karaca, C., Kaçira, M., Ekinci, K., Kaya, D., Baban, A., Güneş, K., Komitti, N., Barnes, I., & Nieminen, M. (2005). Türkiye’de Tarimsal Atiklarin Değerlendirilmesi Rehberi, LIFE 03 TCY/ TR /000061, 2005. Adana.

    Google Scholar 

  • Ceh, H., & Hadzi, D. (1956). Infrared spectra of humic acids and their derivatives. Fuel, 55, 77–83.

    Google Scholar 

  • Čežíková, J., Kozler, J., Madronová, L., Novák, J., & Janoš, P. (2001). Humic acids from coals of the North-Bohemian coal field-II. Metal-binding capacity under static conditions, Reactive & Functional Polymers, 47(2), 111–118.

    Article  Google Scholar 

  • Duncan, D. A., Bodle, W. W., Banejerd, D. P. (1981). Energy from biomass and waste. 5th Symposium, Papers: Institute of Gas Technology, Chicago, pp-917.

  • Farmer, C., & Moreison, R. I. (1960). Chemical and infrared studies on phragmites peat and its humio acid. PPOC. Royal D&&n Sot. A, 1, 85–104.

    Google Scholar 

  • Ferro-García, M. A., Rivera-Utrilla, J., Bautista-Toledo, I., & Moreno-Castilla, C. (1998). Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) ions. Langmuir, 14(7), 1880–1886.

    Article  Google Scholar 

  • Foyle, T., Jennings, L., & Mulcahy, P. (2007). Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresource Technology, 98, 3026–3036.

    Article  CAS  Google Scholar 

  • González Pérez, M., Martin-Neto, L., Saab, S. C., Novotny, E. H., Milori Débora, M. B. P., Bagnato, V. S., Colnago, L. A., Melo, W. J., & Knicker, H. (2004). Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma, 118, 181–190.

    Article  Google Scholar 

  • Havelcová, M., Mizera, J., Śykorová, I., & Pekař, M. (2009). Sorption of metal ions on lignite and the derived humic substances. Journal of Hazardous Materials, 161(1), 559–564.

    Article  Google Scholar 

  • Hiradate, S., Nakadai, T., Shindo, H., & Yoneyama, T. (2004). Carbon source of humic substances in some Japanese volcanic ash soils determined by carbon stable isotopic ratio, δ13C. Geoderma, 119(1–2), 133–141.

    Article  CAS  Google Scholar 

  • Kanduč, T., Markič, M., & Pezdič, J. (2005). Stable isotope geochemistry of different lithotypes of the Velenje lignite (Slovenia). Geologija, 48(1), 83–95.

    Article  Google Scholar 

  • Kiprop, K. J., Coumon, M. C., Pourtier, E., Kimutai, S., & Kirui, S. (2013). Synthesis of humic and fulvic acids and their characterization using optical spectroscopy (ATR-FTIR and UV–visible). International Journal of Applied Science and Technology, 3(8), 28–35.

    Google Scholar 

  • Kislenko, V. N., & Oliinyk, L. P. (2003). Binding of copper(II), cobalt(II), and nickel(II) cations with humic acids and their sodium salts in aqueous media. Russian Journal of Applied Chemistry, 76(12), 1962–1964.

    Article  CAS  Google Scholar 

  • Klöcking, R. (1992). Humic substances in the global environment and implications in human health. N. Senesiand T. M. Miano (Eds.), Proc. 6th Intern. Meeting of the Intern. Humic Substances Soc., Monopoli, Bari, Italy, September 20-25, p.129, Elsevier.

  • Klučáková, M., & Pekař, M. (2006). New model for equilibrium sorption of metal ions on solid humic acids. Colloids and Surfaces A: Physicochemical and Engineering, 286(13), 126–133.

    Article  Google Scholar 

  • Maccarthy, P. (2001). The principles of humic substances: an introduction to the first principle. Soil Science, 166, 738–751.

    Article  CAS  Google Scholar 

  • Meryemoglu, B., Hesenov, A., Irmak, S., Atanur, O. M., & Erbatur, O. (2010). Aqueous phase reforming of biomass using various types of supported precious metal and raney nickel catalysts for hydrogen production. International Journal of Hydrogen Energy, 35(22), 12580–12587.

    Article  CAS  Google Scholar 

  • Miano, T. M. and Alberts, J. (2001). Fluorescence behavior of molecular fractions of suwannee river water. The effect of photo-oxidation. In Understanding Humic Substances. Advanced Methods, Properties and Applications. Ed. E. A. Ghabbor and G. Davies. Boston. USA 157 -166.

  • Milori, D. M. B. P. L., Bayer, M. N. C., Mielniczuk, J., & Bagnato, V. S. (2002). Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science, 167(11), 739–749.

    Article  CAS  Google Scholar 

  • Motta, F. L., & Santana, M. H. A. (2013). Production of humic acids from oil palm empty fruit bunch by submerged fermentation with Trichoderma viride: cellulosic substrates and nitrogen sources. Biotechnology Progress, 29, 631–637.

    Article  CAS  Google Scholar 

  • Padovan, G. J., Rodriques, L. P., Leme, I. A., Jong, D. D., & Marchini, J. S. (2007). Presence of C4 sugars in honey samples detected by the carbon isotope ratio measured by IRMS. Eurasian Journal of Analytical Chemistry, 2(3), 134–141.

    CAS  Google Scholar 

  • Palanivell, P., Susilawati, K., Ahmed, O. H., & Majid, N. K. (2013). Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth. The Scientific World Journal, 2013, 1-15.

  • Schnitzer, M. (1965). The application of infrared spectroscopy to investigations on soil humio compounds. Can. Spectroae, 10, 121–127.

    CAS  Google Scholar 

  • Schulten, H. R., & Schnitzer, M. (1997). The chemistry of soil organic nitrogen: a review. Soil Science, 162, 115.

    Article  CAS  Google Scholar 

  • Sławińska, D., Rolewski, P., & Sławiński, J. (2007). Synthesis and properties of model humic substances derived from gallic acid. International Agrophysics, 21(2), 199–208.

    Google Scholar 

  • Sun, R. C., & Tomkinson, J. (2002). Characterizations of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydrate Polymers, 50, 263–271.

    Article  CAS  Google Scholar 

  • Theng, B. K. G., & Posner, A. M. (1967). Nature of the carbonyl groups in soil humio acid. Soil Science, 104, 191–201.

    Article  CAS  Google Scholar 

  • Verstraete, W., & Devliegher, W. (1997). Formation of non-bioavailable organic residues in soil: perspectives for site remediation. Biodegradation, 7, 471–485.

    Article  Google Scholar 

  • Wagner, G. H., & Stevenson, J. (1965). Struotural arrangement of functional groups in soil humic acid so revealed by infrared analyses. Soil Science Society of America Journal, 29, 43–48.

    Article  CAS  Google Scholar 

  • Yang, F., Du, Q., Sui, L., & Cheng, K. (2021). One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresource Technology, 328(124), 825.

    Google Scholar 

  • Yaşar, S. (2002). Comparison of cellulose, hemicellulose and lignin content in Miscanthus (Elephant Grass) Giganteus, Miscanthus Goliath and Miscanthus Silver Vane. Journal of Süleyman Demirel University Faculty of Forestry, 2, 27–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Meryemoglu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meryemoglu, B., Ozsel, B.K. Humic Acids Derived from Lignocellulosic Biomass: Characterization and Utilizing for Environmental Applications. Water Air Soil Pollut 233, 402 (2022). https://doi.org/10.1007/s11270-022-05866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05866-5

Keywords

Navigation