Skip to main content

Advertisement

Log in

BTEX in Ambient Air of India: a Scoping Review of their Concentrations, Sources, and impact

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Toxic gaseous organic air pollutants such as benzene, toluene, ethylbenzene, and xylene isomers (m, p, and o-x) (BTEX) are considered hazardous due to its adverse impacts on human health and on climate change. This review identifies the major research questions addressed so far and the research gap in research articles, published between 2001 and 2022, focusing on the ambient BTEX concentrations in different locations in India along with its sources, ozone formation potential (OFP), and associated health risks. The ambient levels of BTEX were also compared with those of other Asian countries. A comparison of ambient BTEX levels with different microenvironments in India is also presented. BTEX concentrations were found in the range of 30.95 to 317.18 µg m−3 and multi-fold higher in urban environments than those measured in the rural air. In most reported studies, the order of occurrence of BTEX compounds was toluene > benzene > xylene isomers > ethylbenzene and winter had higher concentrations than in other seasons, including summer. As far as BTEX levels in classified areas of urban environments are concerned, traffic locations have shown the highest BTEX concentrations, followed by residential, commercial, and industrial locations. OFP indicated that xylene isomers and toluene contributed to ozone formation. The major gaps in reported studies on BTEX measurement are (1) source apportionment; (2) impact on lower tropospheric chemistry, human health, and climate change; and (3) removal techniques from air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All datasets generated or analyzed during this study are included in this article (and its supplementary information files).

References

  • Alghamdi, A., & Rahim, M. M. (2014). Media characteristics, national culture, and E-government services usage: Developing a model and survey instrument, in: Proceedings - Pacific Asia Conference on Information Systems, PACIS 2014.

  • An, J., Zhu, B., Wang, H., Li, Y., Lin, X., & Yang, H. (2014). Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.08.021

  • Badol, C., Locoge, N., & Galloo, J. C. (2008). Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2007.09.002

  • Barletta, B., Meinardi, S., Simpson, I. J., Khwaja, H. A., Blake, D. R., & Rowland, F. S. (2002). Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmospheric Environment. https://doi.org/10.1016/S1352-2310(02)00302-3

  • Bauri, N., Bauri, P., Kumar, K., & Jain, V. K. (2016). Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India). Air Quality Atmosphere & Health. https://doi.org/10.1007/s11869-015-0313-z

  • Bretón, R. M. C., Bretón, J. G. C., Kahl, J. W., Chi, M. P. U., Lozada, S. E. C., de la Luz Espinosa Fuentes, M., & del Carmen Lara Severino, R. (2022). Seasonal and diurnal variations of BTEX in ambient air from a site impacted by the oil industry in Southeast Mexico Bulletin of Environment Contamination and Toxicology. https://doi.org/10.1007/s00128-021-03379-1

  • Buczynska, A. J., Krata, A., Stranger, M., Locateli Godoi, A. F., Kontozova-Deutsch, V., Bencs, L., Naveau, I., Roekens, E., & Van Grieken, R. (2009). Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmospheric Environment, 43, 311–318. https://doi.org/10.1016/j.atmosenv.2008.09.071

    Article  CAS  Google Scholar 

  • Cai, C., Geng, F., Tie, X., Yu, Q., & An, J. (2010). Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2010.07.059

  • Carter, W. P. L. (1994). Development of ozone reactivity scales for volatile organic compounds. Journal of the Air and Waste Management Association. https://doi.org/10.1080/1073161x.1994.10467290

    Article  Google Scholar 

  • Carter, W. P. (2009). Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. California Air Resources. Board Contract.

  • Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., & Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.07.033

    Article  Google Scholar 

  • Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., & Wang, T. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research. https://doi.org/10.1029/91JD03014

    Article  Google Scholar 

  • Chan, L. Y., Lau, W. L., Wang, X. M., & Tang, J. H. (2003). Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environment International, 29(4), 429–435. https://doi.org/10.1016/S0160-4120(02)00189-7

    Article  CAS  Google Scholar 

  • Chen, L., Hu, G., Fan, R., Lv, Y., Dai, Y., & Xu, Z. (2018). Association of PAHs and BTEX exposure with lung function and respiratory symptoms among a nonoccupational population near the coal chemical industry in Northern China. Environment International. https://doi.org/10.1016/j.envint.2018.08.004

    Article  Google Scholar 

  • Choi, D. W., Moon, K. W., Byeon, S. H., Lee, E. I., Sul, D. G., Lee, J. H., Oh, E. H., & Kim, Y. H. (2009). Indoor volatile organic compounds in atopy patients' houses in South Korea. Indoor and Built Environment, 18(2), 144–154. https://doi.org/10.1177/1420326X08101945

    Article  CAS  Google Scholar 

  • Civan, M. Y., Elbir, T., Seyfioglu, R., Kuntasal, Ö. O., Bayram, A., Doğan, G., Yurdakul, S., Andiç, Ö., Müezzinoğlu, A., Sofuoglu, S. C., & Pekey, H. (2015). Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmospheric Environment, 103, 102–113. https://doi.org/10.1016/j.atmosenv.2014.12.031

    Article  CAS  Google Scholar 

  • Dehghani, F., Omidi, F., Heravizadeh, O., Chamgordani, S. B., Gharibi, V., & Manesh, A. S. (2018). Occupational health risk assessment of volatile organic compounds emitted from the coke production unit of a steel plant. International Journal of Occupational Safety and Ergonomics, 26, 227–232. https://doi.org/10.1080/10803548.2018.1443593

    Article  Google Scholar 

  • Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2007.09.004

    Article  Google Scholar 

  • Durmusoglu, E., Taspinar, F., & Karademir, A. (2010). Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2009.11.117

    Article  Google Scholar 

  • Dutta, C., Som, D., Chatterjee, A., Mukherjee, A. K., Jana, T. K., & Sen, S. (2009). Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environmental Monitoring and Assessmenthttps://doi.org/10.1007/s10661-007-0142-0

  • Fanizza, C., Manigrasso, M., Incoronato, F., Schiro, R., & Avino, P. (2011). Temporal trend and ozone formation potential of aromatic hydrocarbons in urban air of Rome. In Proceedings of the 3rd international CEMEPE & SECOTOX Conference 2011 (pp. 539–544). GRC.

    Google Scholar 

  • Gao, J., Zhang, J., Li, H., Li, L., Xu, L., Zhang, Y., Wang, Z., Wang, X., Zhang, W., Chen, Y., & Cheng, X. (2018). Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account–A case study in a typical urban area in Beijing. Science of the Total Environment, 628, 791–804. https://doi.org/10.1016/j.scitotenv.2018.01.175

    Article  CAS  Google Scholar 

  • Garg, A., & Gupta, N. C. (2019). A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.12.426

    Book  Google Scholar 

  • Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T., Maeda, T., Wakamatsu, S., & Blanco, S. (2015). Volatile organic compounds in the atmosphere of Mexico City. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2015.08.014

  • Guenther, A. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research. https://doi.org/10.1029/94JD02950

    Article  Google Scholar 

  • Guo, S., Tan, J., Duan, J., Ma, Y., Yang, F., He, K., & Hao, J. (2012). Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-011-2493-9

  • Hajizadeh, Y., Mokhtari, M., Faraji, M., Mohammadi, A., Nemati, S., Ghanbari, R., Abdolahnejad, A., Fard, R. F., Nikoonahad, A., Jafari, N., & Miri, M. (2018). Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2017.09.005

  • Han, X., & Naeher, L. P. (2006). A review of traffic-related air pollution exposure assessment studies in the developing world. Environment International. https://doi.org/10.1016/j.envint.2005.05.020

    Article  Google Scholar 

  • Hazrati, S., Rostami, R., Farjaminezhad, M., & Fazlzadeh, M. (2016). Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2016.02.042

  • He, P. J., Tang, J. F., Yang, N., Fang, J. J., He, X., & Shao, L. M. (2012). The emission patterns of volatile organic compounds during aerobic biotreatment of municipal solid waste using continuous and intermittent aeration. Journal of the Air & Waste Management Association, 62(4), 461–470. https://doi.org/10.1080/10962247.2012.658954

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Guo, H., & Tsai, W. Y. (2004). Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2003.10.004

    Article  Google Scholar 

  • Hoque, R. R., Khillare, P. S., Agarwal, T., Shridhar, V., & Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2007.08.036

    Book  Google Scholar 

  • Hu, R., Liu, G., Zhang, H., Xue, H., & Wang, X. (2018). Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2018.05.056

    Article  Google Scholar 

  • Huang, R., Nie, Y., Duo, L., Zhang, X., Wu, Z., & Xiong, J. (2021). Construction land suitability assessment in rapid urbanizing cities for promoting the implementation of United Nations sustainable development goals: a case study of Nanchang. China. Environmental Science and Pollution Research, 28(20), 25650–25663. https://doi.org/10.1007/s11356-020-12336-0

    Article  Google Scholar 

  • International Agency for Research on Cancer (IARC). (2012). Biological agents. Volume 100B: A review of human carcinogens. Biological agents. IARC, Lyon. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012

  • Ji, Y., Gao, F., Wu, Z., Li, L., Li, D., Zhang, H., Zhang, Y., Gao, J., Bai, Y., & Li, H. (2020). A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures. Journal of Environmental Sciences (China). https://doi.org/10.1016/j.jes.2020.03.035

  • Kansal, A. (2009). Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2008.11.048

    Article  Google Scholar 

  • Kermani, M., Asadgol, Z., Gholami, M., Jafari, A. J., Shahsavani, A., Goodarzi, B., & Arfaeinia, H. (2021). Occurrence, spatial distribution, seasonal variations, potential sources, and inhalation-based health risk assessment of organic/inorganic pollutants in ambient air of Tehran. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00779-w

    Article  Google Scholar 

  • Kim, B. M., Park, E. K., LeeAn, S. Y., Ha, M., Kim, E. J., Kwon, H., Hong, Y. C., Jeong, W. C., Hur, J., Cheong, H. K., Yi, J., Kim, J. H., Lee, B. E., Seo, J. H., Chang, M. H., & Ha, E. H. (2009). BTEX exposure and its health effects in pregnant women following the Hebei Spirit oil spill. Journal of Preventive Medicine and Public Health. https://doi.org/10.3961/jpmph.2009.42.2.96

    Article  Google Scholar 

  • Kim, K. H., Ho, D. X., Park, C. G., Ma, C. J., Pandey, S. K., Lee, S. C., Jeong, H. J., & Lee, S. H. (2012). Volatile organic compounds in ambient air at four residential locations in Seoul, Korea. Environmental Engineering Science, 29(9), 875–889. https://doi.org/10.1089/ees.2011.0280

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, D., Anandam, K., Kumar, K., & Jain, V. K. (2017). Dynamic interaction of trace gases (VOCs, ozone, and NOx) in the rural atmosphere of sub-tropical India. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-017-0478-8

  • Kumar, A., Singh, D., Kumar, K., Singh, B. B., & Jain, V. K. (2018). Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Science of the Total Environment, 613–614, 492–501. https://doi.org/10.1016/j.scitotenv.2017.09.096

    Article  CAS  Google Scholar 

  • Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., & Akimoto, H. (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-13-11019-2013

    Article  Google Scholar 

  • Lan, T. T. N., & Minh, P. A. (2013). BTEX pollution caused by motorcycles in the megacity of HoChiMinh. Journal of Environmental Sciences (China), 25, 348–356. https://doi.org/10.1016/S1001-0742(12)60045-X

    Article  CAS  Google Scholar 

  • Lee, S. C., Chiu, M. Y., Ho, K. F., Zou, S. C., & Wang, X. (2002). Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere. https://doi.org/10.1016/S0045-6535(02)00040-1

    Article  Google Scholar 

  • Li, L., Li, H., Zhang, X., Wang, L., Xu, L., Wang, X., Yu, Y., Zhang, Y., & Cao, G. (2014). Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China. Journal of Environmental Sciences, 26(1), 214–223. https://doi.org/10.1016/S1001-0742(13)60400-3

    Article  CAS  Google Scholar 

  • Li, K., Chen, L., Ying, F., White, S. J., Jang, C., Wu, X., Gao, X., Hong, S., Shen, J., Azzi, M., & Cen, K. (2017). Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2017.06.003

  • Lin, R. T., Christiani, D. C., Kawachi, I., Chan, T. C., Chiang, P. H., & Chan, C. C. (2016). Increased risk of respiratory mortality associated with the high-tech manufacturing industry: A 26-year study. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph13060557

    Article  Google Scholar 

  • Ling, Z. H., & Guo, H. (2014). Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environmental Science & Policy. https://doi.org/10.1016/j.envsci.2013.12.004

    Article  Google Scholar 

  • Liu, Y., Shao, M., Lu, S., Chang, C. C., Wang, J. L., & Chen, G. (2008). Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-8-1531-2008

  • Liu, Y., Kong, L., Liu, X., Zhang, Y., Li, C., Zhang, Y., Zhang, C., Qu, Y., An, J., Ma, D., & Tan, Q. (2021). Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing. China. Atmospheric Pollution Research, 12(3), 33–46. https://doi.org/10.1016/j.apr.2021.01.013

    Article  CAS  Google Scholar 

  • Lü, H., Wen, S., Feng, Y., Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China. Science of the Total Environment, 368(2-3), 574–584. https://doi.org/10.1016/j.scitotenv.2006.03.044

    Article  CAS  Google Scholar 

  • Lupo, P. J., Symanski, E., Kim Waller, D., Chan, W., Langlois, P. H., Canfield, M. A., & Mitchell, L. E. (2011). Maternal exposure to ambient levels of benzene and neural tube defects among offspring: Texas, 1999–2004. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1002212

    Article  Google Scholar 

  • Ly, B. T., Kajii, Y., Shoji, K., Van, D. A., Nghiem, T. D., & Sakamoto, Y. (2020). Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi. Chemosphere, 254, 126749. https://doi.org/10.1016/j.chemosphere.2020.126749

    Article  CAS  Google Scholar 

  • Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y., & Liu, M. (2016). Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.09.093

    Article  Google Scholar 

  • Majumdar, D., & Srivastava, A. (2012). Volatile organic compound emissions from municipal solid waste disposal sites: A case study of Mumbai, India. Journal of the Air & Waste Management Association.

  • Majumdar (neé Som), D., Dutta, C., Mukherjee, A. K., & Sen, S. (2008). Source apportionment of VOCs at the petrol pumps in Kolkata, India; exposure of workers and assessment of associated health risk. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2008.09.011

  • Majumdar, D., Mukherjeea, A. K., & Sen, S. (2011). BTEX in ambient air of a Metropolitan City. Journal of Environmental Protection. (Irvine, Calif). https://doi.org/10.4236/jep.2011.21002

  • Majumdar, D., Rao, P. S., Chakraborty, B. D., & Srivastava, A. (2015). Effects of unregulated anthropogenic activities on mixing ratios of volatile organic air pollutants—A case study. Journal of the Air and Waste Management Association. https://doi.org/10.1080/10962247.2015.1062815

    Article  Google Scholar 

  • Maleki, R., Asadgol, Z., Kermani, M., Jonidi Jafari, A., Arfaeinia, H., & Gholami, M. (2020). Monitoring BTEX compounds and asbestos fibers in the ambient air of Tehran, Iran: Seasonal variations, spatial distribution, potential sources, and risk assessment. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1781836

  • Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2016). Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2016.09.067

    Article  Google Scholar 

  • Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2018). Exposure levels and health risk assessment of ambient BTX at urban and rural environments of a terai region of northern India. Environmental Pollution. https://doi.org/10.1016/j.envpol.2018.07.107

    Article  Google Scholar 

  • Massolo, L., Rehwagen, M., Porta, A., Ronco, A., Herbarth, O., & Mueller, A. (2010). Indoor–outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environmental Toxicology, 25(4), 339–349. https://doi.org/10.1002/tox.20504

    Article  CAS  Google Scholar 

  • McKenzie, L. M., Witter, R. Z., Newman, L. S., & Adgate, J. L. (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.02.018

    Article  Google Scholar 

  • Mehta, D., Hazarika, N., & Srivastava, A. (2020). Diurnal variation of BTEX at road traffic intersection points in Delhi, India: Source, ozone formation potential, and health risk assessment. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-07495-8

  • Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H. R., Ebrahimi Aval, H., Ahmadi, E., Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A., & Azari, A. (2016). Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemospherehttps://doi.org/10.1016/j.chemosphere.2016.07.088

  • Mohan, S., & Ethirajan, R. (2012). Assessment of hazardous volatile organic compounds (VOC) in a residential area abutting a large petrochemical complex. Journal of Tropical Forestry and Environment. https://doi.org/10.31357/jtfe.v2i1.569

  • Na, K., Moon, K. C., & Yong, P. K. (2005). Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2005.06.005

    Article  Google Scholar 

  • National Ambient Air Quality Status. (2009). https://cpcb.nic.in

  • Na, K., & Kim, Y. P. (2001). Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmospheric Environment. https://doi.org/10.1016/S1352-2310(00)00464-7

  • Niu, Z., Zhang, H., Xu, Y., Liao, X., Xu, L., & Chen, J. (2012). Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. Journal of Environmental Monitoring. https://doi.org/10.1039/c2em10884d

  • Pandit, G. G., Sahu, S. K., & Puranik, V. D. (2011). Distribution and source apportionment of atmospheric non-methane hydrocarbons in Mumbai. Atmospheric Pollution Research. https://doi.org/10.5094/APR.2011.029

    Book  Google Scholar 

  • Parra, M. A., Elustondo, D., Bermejo, R., & Santamaría, J. M. (2009). Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2008.10.032

    Article  Google Scholar 

  • Prabhu, V., Singh, P., Kulkarni, P., & Sreekanth, V. (2022). Characteristics and health risk assessment of fine particulate matter and surface ozone: Results from Bengaluru. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-022-09852-6

    Book  Google Scholar 

  • Rattanajongjitrakorn, P., & Prueksasit, T. (2014). Temporal variation of BTEX at the area of petrol station in Bangkok, Thailand. APCBEE Procedia, 10, 37–41. https://doi.org/10.1016/j.apcbee.2014.10.011

    Article  CAS  Google Scholar 

  • Qin, G., Gao, S., Fu, Q., Fu, S., Jia, H., Zeng, Q., Fan, L., Ren, H., & Cheng, J. (2022). Investigation of VOC characteristics, source analysis, and chemical conversions in a typical petrochemical area through 1-year monitoring and emission inventory. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-19145-7

    Article  Google Scholar 

  • Rad, H. D., Babaei, A. A., Goudarzi, G., Angali, K. A., Ramezani, Z., & Mohammadi, M. M. (2014). Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-014-0254-y

  • Sahu, L. K., & Lal, S. (2006). Distributions of C2-C5 NMHCs and related trace gases at a tropical urban site in India. Atmospheric Environment, 40, 880–891. https://doi.org/10.1016/j.atmosenv.2005.10.021

    Article  CAS  Google Scholar 

  • Sahu, L. K., & Saxena, P. (2015). High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2015.04.021

    Article  Google Scholar 

  • Sahu, L. K., Yadav, R., & Pal, D. (2016). Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions. Journal of Geophysical Research. https://doi.org/10.1002/2015JD024454

    Article  Google Scholar 

  • Sarkar, C., Chatterjee, A., Majumdar, D., Ghosh, S. K., Srivastava, A., & Raha, S. (2014). Volatile organic compounds over Eastern Himalaya, India: Temporal variation and source characterization using Positive Matrix Factorization. Atmospheric Chemistry and Physics Discussions. 10.5194/acpd-14-32133-2014

  • Sharma, S., Goel, A., Gupta, D., Kumar, A., Mishra, A., Kundu, S., Chatani, S., & Klimont, Z. (2015). Emission inventory of non-methane volatile organic compounds from anthropogenic sources in India. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.11.070

    Article  Google Scholar 

  • Seco, R., Peñuelas, J., Filella, I., Llusia, J., Schallhart, S., Metzger, A., Müller, M., & Hansel, A. (2013). Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign. Atmospheric Chemistry and Physics, 13(8), 4291–4306. https://doi.org/10.5194/acp-13-4291-2013

    Article  CAS  Google Scholar 

  • Shikwambana, L., & Kganyago, M. (2020). Trends in atmospheric pollutants from oil refinery processes: A case study over the United Arab Emirates. Remote Sensing Letters. https://doi.org/10.1080/2150704X.2020.1746856

  • Singh, A. K., & Tomer Neetu, J. C. (2012). Monitoring, assessment and status of benzene, toluene and xylene pollution in the urban atmosphere of Delhi, India. Research Journal of Chemical Sciences, 2(4), 45–49.

    CAS  Google Scholar 

  • Singh, D., Kumar, A., Singh, B. P., Anandam, K., Singh, M., Mina, U., Kumar, K., & Jain, V. K. (2016). Spatial and temporal variability of VOCs and its source estimation during rush/non-rush hours in ambient air of Delhi, India. Air Quality, Atmosphere and Health. https://doi.org/10.1007/s11869-015-0354-3

    Book  Google Scholar 

  • Singla, V., Pachauri, T., Satsangi, A., Kumari, K. M., & Lakhani, A. (2012). Comparison of BTX profiles and their mutagenicity assessment at two sites of Agra. The Scientific World Journal. https://doi.org/10.1100/2012/272853

    Book  Google Scholar 

  • So, K. L., & Wang, T. (2004). C3–C12 non-methane hydrocarbons in subtropical Hong Kong: Spatial-temporal variations, source-receptor relationships and photochemical reactivity. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2004.01.029

    Article  Google Scholar 

  • Som, D., Dutta, C., Chatterjee, A., Mallick, D., Jana, T. K., & Sen, S. (2007). Studies on commuters’ exposure to BTEX in passenger cars in Kolkata. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2006.09.025

    Book  Google Scholar 

  • Sorahan, T., Kinlen, L. J., & Doll, R. (2005). Cancer risks in a historical UK cohort of benzene exposed workers. Occupational and Environmental Medicine, 62, 231–236. https://doi.org/10.1136/oem.2004.015628

    Article  CAS  Google Scholar 

  • Srivastava, A. (2004). Source apportionment of ambient VOCS in Mumbai city. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2004.09.009

    Article  Google Scholar 

  • Srivastava, A., Joseph, A. E., & Nair, S. (2004). Ambient levels of benzene in Mumbai city. International Journal of Environmental Health Research. https://doi.org/10.1080/0960312042000218624

    Article  Google Scholar 

  • Srivastava, A., Joseph, A. E., Patil, S., More, A., Dixit, R. C., & Prakash, M. (2005a). Air toxics in ambient air of Delhi. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2004.09.053

    Article  Google Scholar 

  • Srivastava, A., Sengupta, B., & Dutta, S. A. (2005b). Source apportionment of ambient VOCs in Delhi City. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2004.10.008

    Article  Google Scholar 

  • Srivastava, A., Joseph, A. E., & Devotta, S. (2006). Volatile organic compounds in ambient air of Mumbai—India. Atmospheric Environment, 40(5), 892–903. https://doi.org/10.1016/j.atmosenv.2005.10.045

  • Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Yunus, S. S. M., Hewitt, C. N., Wild, O., Nemitz, E., Gadi, R., Sahu, L. K., Mandal, T. K., Gurjar, B. R., Rickard, A. R., Lee, J. D., & Hamilton, J. F. (2021a). Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment. X. https://doi.org/10.1016/j.aeaoa.2021a.100115

  • Stewart, G. J., Nelson, B. S., Drysdale, W. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Dunmore, R. E., Hewitt, C. N., Nemitz, E., Mullinger, N., Langford, B., Shivani, Reyes-Villegas, E., Gadi, R., Rickard, A. R., Lee, J. D., & Hamilton, J. F. (2021b). Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discusshttps://doi.org/10.1039/d0fd00087f

  • Tan, J. H., Guo, S. J., Ma, Y. L., Yang, F. M., He, K. Bin, Yu, Y. C., Wang, J. W., Shi, Z. B., & Chen, G. C. (2012). Non-methane hydrocarbons and their ozone formation potentials in Foshan, China. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2011.08.0127

  • Tang, J., Chan, C. Y., Wang, X., Chan, L. Y., Sheng, G., & Fu, J. (2005). Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2005.09.018

  • Tang, J. H., Chan, L. Y., Chan, C. Y., Li, Y. S., Chang, C. C., Wang, X. M., Zou, S. C., Barletta, B., Blake, D. R., & Wu, D. (2008). Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2007.12.069

    Article  Google Scholar 

  • Tecer, L. H., Tağıl, Ş., Ulukaya, O., & Fıçıcı, M. (2017). Spatial distribution of BTEX and inorganic pollutants during summer season in Yalova, Turkey. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna, 24(4), 565–581. https://doi.org/10.1515/eces-2017-0037

    Article  CAS  Google Scholar 

  • Tiwari, V., Hanai, Y., & Masunaga, S. (2010). Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-009-0052-0

  • Topp, R., Cyrys, J., Gebefügi, I., Schnelle-Kreis, J., Richter, K., Wichmann, H. E., & Heinrich, J. (2004). Indoor and outdoor air concentrations of BTEX and NO2: Correlation of repeated measurements. Journal of Environmental Monitoring. https://doi.org/10.1039/b405537c

    Article  Google Scholar 

  • Truc, V. T. Q., & Oanh, N. T. K. (2007). Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmospheric Environment, 41(36), 7685–7697. https://doi.org/10.1016/j.atmosenv.2007.06.003

    Article  CAS  Google Scholar 

  • Tunsaringkarn, T., Prueksasit, T., & Kitwattanavong, M. (2010). Cancer risk assessment of the workers exposure to benzene, formaldehyde and acetaldehyde in gasoline station, Bangkok, Thailand and investigation of their possible risk reduction. In Proceedings of the 42nd APACPH Conference (pp. 24–27).

    Google Scholar 

  • Tunsaringkarn, T., Prueksasit, T., Morknoy, D., Siriwong, W., Kanjanasiranont, N., Semathong, S., Rungsiyothin, A., & Zapaung, K. (2014). Health risk assessment and urinary biomarkers of VOCs exposures among outdoor workers in urban area, Bangkok, Thailand. International Journal of Environment and Pollution. https://doi.org/10.7726/ijeps.2014.1003

  • USEPA. (1989). Health and environmental effects (U.S.) Environmental Protection Agency, EPA. https://archive.epa.gov/

  • Varotsos, C. A., & Cracknell, A. P. (2020). Remote sensing letters contribution to the success of the sustainable development goals-UN 2030 agenda. Remote Sensing Letter. https://doi.org/10.1080/2150704X.2020.1753338

  • Varshney, C. K., & Padhy, P. K. (1998). Emissions of total volatile organic compounds from anthropogenic sources in India. Journal of Industrial Ecology. https://doi.org/10.1162/jiec.1998.2.4.93

    Article  Google Scholar 

  • Wang, X. M., Sheng, G. Y., Fu, J. M., Chan, C. Y., Lee, S. C., Chan, L. Y., & Wang, Z. S. (2002). Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People's Republic of China. Atmospheric Environment, 36(33), 5141–5148. https://doi.org/10.1016/S1352-2310(02)00640-4

    Article  CAS  Google Scholar 

  • WHO. (2000). Air quality guidelines for Europe. In WHO Regional Publications, European Series (Vol. 91, p. 87e91). https://apps.who.in

    Google Scholar 

  • Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., & Wang, W. X. (2014). Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes. Atmospheric Chemistry and Physics, 14, 13175–13188. https://doi.org/10.5194/acp-14-13175-2014

    Article  CAS  Google Scholar 

  • Zhang, Y., Mu, Y., Liu, J., & Mellouki, A. (2012). Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. Journal of Environmental Sciences. https://doi.org/10.1016/S1001-0742(11)60735-3

  • Zhang, X., Yin, Y., Wen, J., Huang, S., Han, D., Chen, X., & Cheng, J. (2019). Characteristics, reactivity and source apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city. Atmospheric Environment, 215, 116898. https://doi.org/10.1016/j.atmosenv.2019.116898

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, X., He, Q., Wang, H., Sheng, G., Chan, L. Y., Fu, J., & Blake, D. R. (2004). Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou. China. Atmospheric Environment, 38(36), 6177–6184. https://doi.org/10.1016/j.atmosenv.2004.07.025

    Article  CAS  Google Scholar 

  • Zhou, J., You, Y., Bai, Z., Hu, Y., Zhang, J., & Zhang, N. (2011). Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2010.10.022

Download references

Acknowledgements

This study is mainly supported by SERB, India project proposal (CRG/2022/003926), and partially supported by DST FIST, India program (SR/FST/ CSI-259/2014 (c)), and UGC-SAP-DRS-II, India program (F-540/7/DRS-II/2016 (SAP-I)). One of the authors, Aishwaryashri Tamrakar (AT), is grateful to Pt. Ravishankar Shukla University for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsh Pervez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamrakar, A., Pervez, S., Verma, M. et al. BTEX in Ambient Air of India: a Scoping Review of their Concentrations, Sources, and impact. Water Air Soil Pollut 233, 411 (2022). https://doi.org/10.1007/s11270-022-05863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05863-8

Keywords

Navigation