Skip to main content

Advertisement

Log in

The Valorization of Luffa cylindrica as an Etheramine Biosorbent in Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The water reuse in mineral processing as well as the quality of hydric bodies that receive the effluents can be benefited with the removal of etheramines. In this study, synthetic effluents with etheramines (EDA) were treated by adsorption, in batch and in a fixed bed column, using Luffa cylindrica. The biosorbent was washed in three cross-current steps of 60 min. The increase in pH from 7.5 to 9.5 provided a small increase in the EDA amount adsorbed, but a subsequent rise to 10.5 slightly impacted the adsorption. At equilibrium, the adsorption capacity in TOC (total organic carbon) was 7.98 mg/g (Ci = 50 mg/l) and 22.47 mg/g (Ci = 200 mg/l) and the kinetics was represented by a pseudo-second-order model. Based on determination coefficients, the Freundlich, Redlich-Peterson, and Sips isotherms were similar with adequate fits. In a column of d = 13 mm and h = 25 cm, the breakthrough curves were represented by the Yan model. At pH 7.5 and 26 °C, the effects of bed height (5, 10, 15, and 20 cm), feed flow rates (3.2; 8.9; 14.5; and 22.8 ml/min), and initial EDA concentrations of 50 and 150 mg/l on adsorption were evaluated. The column tends to a fast exhaustion at higher application rates (17.177 ml/cm2.min); however, there was a greater stability using a lower one (6.705 ml/cm2.min). The shortest exhaustion time was 60 min for hL = 10 cm and superficial application rate of 17.177 ml/min.cm2 and the longest time was 360 min for the lowest superficial application rate (2.411 ml/min.cm2). From the results, it can be inferred that the column adsorption of etheramines by Luffa cylindrica presents high potential for use in the treatment of liquid effluents containing residual concentrations of EDA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adewuyi A., Pereira FV (2017). Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb(II) pollutant from water system. Beni-Suef University Journal of Basic and Applied Sciences, 6, 118–126.https://doi.org/10.1016/j.bjbas.2017.02.001

  • Akgül, M. et al. (2013). Some chemical properties of luffa and its suitability for medium density fiberboard (MDF) production. BioResources, 8(2), 1709–1717. https://doi.org/10.15376/biores.8.2.1709-1717

  • Aksu, Z., and Gonen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemistry, 39, 599–613.https://doi.org/10.1016/S0032-9592(03)00132-8

  • Allen, S. J., McKay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, 322–333. https://doi.org/10.1016/j.jcis.2004.08.078

    Article  CAS  Google Scholar 

  • Ana. (2019). Conjuntura dos recursos hídricos no Brasil. Agência Nacional de Águas (ANA), 100.

  • Andrade, M. C. et al. (2006). A mineração e o uso da água na lavra e no beneficiamento de minério. In CETEM (Ed.), A Gestão dos Recusrsos Hídricos e a Mineração (pp. 89–122). Rio de Janeiro. https://doi.org/10.5007/fragmentos.v28i0.8118

  • Antunes, A. . et al. (2016). Avaliação da Potencialidade de adsorção da bucha vegetal (Luffa cylindrica) para remoção de corante de meios aquosos. Tecno-lógica, 20(2), 72–79.

  • Araujo, D. M. et al. (2016). Carta Patente da República Federativa do Brasil. Instituto Nacional da Propriedade Industrial, 260.

  • Barrera, G. M., López, M. M., & Cruz, E. M. (2013). Concreto polimérico reforzado con fibras de luffa. Informacion Tecnologica, 24(4), 67–74. https://doi.org/10.4067/S0718-07642013000400008

    Article  Google Scholar 

  • Bastos, P. C. (2018). Caracterização do biossorvente Luffa Cylindrica in natura e funcionalizado e seu uso na remoção de eteraminas de soluções aquosas. Universidade Federal de Minas Gerais.

  • Batisteli, G. M. B., Peres, A. E. C. (2008). Residual amine in iron ore flotation. Minerals Engineering, 21, 873–876. https://doi.org/10.1016/j.mineng.2008.04.002

  • Bichueti, R. S. et al. (2014). O uso da água na mineração: uma análise da produção científica internacional. Revista de Gestão Ambiental e Sustentabilidade, 3(2), 58–73. https://doi.org/10.5585/geas.v3i2.129

  • Bottin, C. et al. (1998). Luffa cylindrica como método mecânico alternativo no controle da placa bacteriana supragenival e gengivite. Ciências Biológicas e da Saúde, 4(1), 85–97.

  • Brasil Mineral. (2018). Mineradoras devem investir em água de reuso. Brasil Mineral.

  • Canada, G. of. (2021). Aliphatic amines group. Environment and Climate Change Canada Health Canada, 156.

  • Chaves, A. P. . et al. (2010). Flotação. In A. LUZ (Ed.), Tratamento de Minerios (5th ed., pp. 465–513). Rio de Janeiro: CETEM/MCT.

  • Chaves, A. P. (2006). Teoria e prática do tratamento de minérios. (Signus, Ed.) (3rd ed.). São Paulo: Signus.

  • Chaves, A. P. (2009). Teoria e prática do tratamento de minérios: A flotação no Brasil. (Signus, Ed.) (2nd ed.). São Paulo: Signus.

  • Colling, A. V., RIZZO, A. C. L. (2017). Biodegradação de Aminas: Recuperação ambiental e viabilidade econômica do processo. Rio de Janeiro: CETEM/MCT.

  • D’Almeida, A. L. F. S., Calado, V., Barreto, D. W. (2005). Acetilação da fibra de bucha (Luffa cylindrica). Polímeros: Ciência e Tecnologia, 15(1), 59–62.

  • Demir, H. et al. (2008). Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials, 153, 389–394.https://doi.org/10.1016/j.jhazmat.2007.08.070

  • Febrianto, J., et al. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    Article  CAS  Google Scholar 

  • Fernandes, H. D., et al. (2019). Reciclagem de éter-aminas, utilizadas na flotação de minério de ferro, por meio da adsorção. Engenharia Sanitaria e Ambiental, 24(2), 251–260. https://doi.org/10.1590/s1413-41522019169748

    Article  Google Scholar 

  • Ferreira, I. C. P. V., et al. (2010). Caracterização morfológica de frutos de 17 acessos de bucha vegetal cultivados no Norte de Minas Gerais. Horticultura Brasileira, 28(2), 2192–2198.

    Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  • Franco, K. B. (2019). Estudo da adsorção de eteraminas de soluções aquosas pela bucha vegetal (Luffa Cylindrica) em sistema batelada. Universidade Federal de Minas Gerais.

  • Gomes, A. R. (2016). Desenvolvimento de metodologia para determinação de eteraminas provenientes de barragens de rejeitos de mineradoras de ferro utilizando a microextração líquido-líquido dispersiva associada à cromatografia gasosa. Universidade Federal de São João Del-Rei.

  • HO, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. PROCESS BIOCHEMISTRY, 34, 451–465. https://doi.org/10.1021/acs.oprd.7b00090

    Article  CAS  Google Scholar 

  • Kesraoui, A., et al. (2016). Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environmental Science and Pollution Research, 23, 15832–15840. https://doi.org/10.1007/s11356-015-5262-4

    Article  CAS  Google Scholar 

  • Kumara, N. T. R. N., et al. (2014). Equilibrium isotherm studies of adsorption of pigments extracted from Kuduk-kuduk (Melastoma malabathricum L.) pulp onto TiO2 nanoparticles. Journal of Chemistry, 2014, 6. https://doi.org/10.1155/2014/468975

  • Leal, P. V. B. . et al. (2019). Adsorção de eteramina em caulinita natural e tratada com H2O2: proposição de alternativas para o tratamento de efluentes de mineração. Revista Materia, 24(1). https://doi.org/10.1590/S1517-707620190001.0612

  • Leja, J. (1982). Surface Chemistry of Froth Flotation. (p. 758) Netherlands: Springer US.

  • Lindino, C. A., et al. (2014). Adsorption of cadmium in vegetable sponge (Luffa cylindrica). Revista Ambiente e Agua, 9(2), 212–223. https://doi.org/10.4136/1980-993X

    Article  Google Scholar 

  • Luz, A. D., et al. (2013). Analysis of competition between multicomponent btx compounds for the active site of adsorption in a fixed-bed column. Industrial and Engineering Chemistry Research, 52, 16911–16921. https://doi.org/10.1021/ie402452h

    Article  CAS  Google Scholar 

  • Magriotis, Z. M., et al. (2010). Adsorption of etheramine on kaolinite: A cheap alternative for the treatment of mining effluents. Journal of Hazardous Materials, 184, 465–471. https://doi.org/10.1016/j.jhazmat.2010.08.057

    Article  CAS  Google Scholar 

  • Mazali, I. O., & Alves, O. L. (2005). Morphosynthesis: High fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrical). Anais Da Academia Brasileira De Ciencias, 77(1), 25–31. https://doi.org/10.1590/S0001-37652005000100003

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42, 83–94. https://doi.org/10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  • Nascimento, R. F. . et al. (2014). Adsorção: aspectos teóricos e aplicações ambientais. (I. Universitária, Ed.) (1st ed.). Fortaleza. https://doi.org/10.13140/RG.2.1.4340.1041

  • Neder, E. E., Filho, L. S. L. (2006). O uso de aminas graxas e seus derivados na flotação de minérios brasileiros. Holos, 1, 53–75. https://doi.org/10.15628/holos.2006.88

  • Neto, H. A., et al. (2018). Adsorção em coluna de leito fixo aplicada para a pré-concentração de cádmio em amostras de água. Scientia Plena, 14(6), 1–10. https://doi.org/10.14808/sci.plena.2018.064208

  • Nigri, E. M., et al. (2019). Chemical regeneration of bone char associated with a continuous system for defluoridation of water. Brazilian Journal of Chemical Engineering, 36(4), 1631–1643. https://doi.org/10.1590/0104-6632.20190364s20180258

    Article  CAS  Google Scholar 

  • Ogbonna, J. C., et al. (1994). Loofa (Luffa cylindrica) sponge as a carrier for microbial cell immobilization. Journal of Fermentation and Bioengineering, 78(6), 437–442. https://doi.org/10.1016/S0922-338X(98)80086-X

    Article  CAS  Google Scholar 

  • Oliveira, A. P. A. & Luz, A. B. (2001). Recursos hídricos e tratamento de águas na mineração. MCT - Ministério de Ciência e Tecnologia CETEM - Centro de Tecnologia Mineral (p. 36, Vol. 24). Rio de Janeiro.

  • Özkan, A., Özmetin, C., Korkmaz, M., & Fil, B. A. (2017). A semiempirical kinetic model for removal of iron (Fe3+) from saturated boric acid solution by ion exchange using amberlite IR–120 resin. Particulate Science and Technology, 35(5), 505–511. https://doi.org/10.1080/02726351.2015.1076916

    Article  CAS  Google Scholar 

  • Özmetin, C., Özkan, A., Kocakerim, M. M., Korkmaz, M., & Özmetin, E. (2009). An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR-120 resin. Chemical Engineering Journal, 148(2–3), 420–424. https://doi.org/10.1016/j.cej.2008.09.021

    Article  CAS  Google Scholar 

  • Poulopoulos, S. G., Inglezakis, V. J. (2006). Adsorption, ion exchange and catalysis: design of operations and environmental applications. (Elsevier, Ed.). Elsevier Science.

  • Redlich, O., & Peterson, D. L. (1958). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024–1026. https://doi.org/10.1021/j150576a611

    Article  Google Scholar 

  • Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. (John Wiley & Sons, Ed.) (Ilustrada.). Wiley.

  • Sánches, L. E. (2015). Avaliação de impacto ambiental. Conceito e métodos (2nd ed.). Oficina de Textos.

    Google Scholar 

  • Shinzato, M. C., et al. (2009). Remoção de Pb2+ e Cr3+ em solução por zeólitas naturais associadas a rochas eruptivas da formação serra geral, bacia sedimentar do Paraná. Química Nova, 32(8), 1989–1994. https://doi.org/10.1590/S0100-40422009000800002

    Article  CAS  Google Scholar 

  • Silva, K. M., et al. (2012). Qualidade sanitária e fisiológica da hortaliça não-convencional Luffa acutangula. Horticultura Brasileira, 30(2), 8085–8090.

    Article  Google Scholar 

  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16(5), 490–495. https://doi.org/10.1063/1.1746922

    Article  CAS  Google Scholar 

  • Solomons, T. W. G. & Fryhle, C. B. (2001). Química Orgânica (7th ed.) (p. 474, v. 2). Rio de Janeiro: LTC.

  • Souza, P. H. C. (2022). Solar pyrolysis and electrical furnace pyrolysis of Luffa cylindrica fibers to obtain adsorbent biochar. Universidade Federal de Minas Gerais.

  • Sparks, D. L. (1986). Kinetics of reaction in pure and mixed systems. In D. L. SPARKS (Ed.), Soil Physical Chemistry (pp. 83–145). Flórida: CRC Press.

  • Srivastava, V. C., et al. (2008). Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Industrial and Engineering Chemistry Research, 47(5), 1603–1613. https://doi.org/10.1021/ie0708475

    Article  CAS  Google Scholar 

  • Standard Methods. (2017). 5220 Chemical oxygen demand (COD) (2017). In Standard methods for the examination of water and wastewater (23rd ed.). Washington. https://doi.org/10.2105/SMWW.2882.103

  • Tanobe, V. O. A. (2003). Caracterização de fibras de esponjas de Luffa cylindrica para utilização em compósitos com matriz polimérica. Universidade Federal do Paraná.

  • UNESCO. (2019). The United Nations World Water Development Report 2019: Leaving no one behind. (S. and C. O.-U. United Nations Educational, Ed.)UNESCO Digital Library (7th ed.). Paris. .1037//0033–2909.I26.1.78

  • UNESCO. (2020). Água e mudança climática. Relatorio Mundial das Nações Unidas sobre Desenvolvimento dos Recursos Hídricos, 12.

  • Vieira, S. S., et al. (2012). Macauba palm (acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chemical Engineering Journal, 183, 152–161. https://doi.org/10.1016/j.cej.2011.12.047

    Article  CAS  Google Scholar 

  • Yan, G., Viraraghavan, T., & Chen, M. (2001). A new model for heavy metal removal in a biosorption column. Adsorption Science and Technology, 19(1), 25–43. https://doi.org/10.1260/0263617011493953

    Article  CAS  Google Scholar 

  • Ye, C., Hu, N., & Wang, Z. (2013). Experimental investigation of Luffa cylindrica as a natural sorbent material for the removal of a cationic surfactant. Journal of the Taiwan Institute of Chemical Engineers, 44, 74–80. https://doi.org/10.1016/j.jtice.2012.08.006

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Brazilian Research funding agencies CNPq (National Council for Scientific and Technological Development) (Process 308044/2018–5) and FAPEMIG (Research Support Foundation of the State of Minas Gerais).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica C. S. Evangelista.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelista, J.C.S., Rocha, S.D.F. The Valorization of Luffa cylindrica as an Etheramine Biosorbent in Wastewater Treatment. Water Air Soil Pollut 233, 384 (2022). https://doi.org/10.1007/s11270-022-05854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05854-9

Keywords

Navigation