Skip to main content

Advertisement

Log in

Altitudinal Migration of Species of Fir (Abies spp.) in Adaptation to Climate Change

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Global climate change is considered an irreversible problem, which might directly or indirectly affect all the organisms and ecosystems on the earth and the world has to struggle with. Plants having no effective movement mechanism are the group that global climate change will affect the most. In order to minimize the species and population losses, it is important to estimate the changes in the available distribution areas of species and to ensure the migration mechanism, which the species will need, by the hand of humans. The present study aims to reveal how potential distribution areas of fir, which is among the significant tree species of Turkey and significant portion of global distribution of which is in Turkey, will change from an altitudinal aspect because of the climate change. The results achieved showed that, because of the effects of global climate change, the suitable distribution areas of Abies nordmanniana subsp. nordmanniana will significantly decrease especially at high altitudes and that suitable distribution areas of Abies nordmanniana subsp. equi-trojani will reduce at altitudes higher than 1400 m but increase generally at the altitudes between 200 and 600 m. Moreover, suitable distribution areas of Abies cilicica will shift towards higher altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request. All data are given in manuscript. Data came from the Turkish State of Meteorological Service, https://www.mgm.gov.tr/eng/forecast-cities.aspx. The authors thank the support of the Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Forest Engineering and the General Directorate of Meteorology for their prompt responses to our requests.

Code Availability

Not applicable.

References

  • Adiguzel, F., Cetin, M., Dogan, M., Gungor, S., Kose, M., Bozdogan Sert, E., & Kaya, E. (2022). The assessment of the thermal behavior of an urban park surface in a dense urban area for planning decisions. Environmental Monitoring and Assessment, 194(7), 1–13.

    Article  CAS  Google Scholar 

  • Akkemik, Ü. (Ed.). (2018). Natural-exotic trees and shrubs of Turkey (p. 684). General Directorate of Forestry Publications.

    Google Scholar 

  • Benito Garzón, M., Robson, T. M., & Hampe, A. (2019). ΔTrait SDMs: Species distribution models that account for local adaptation and phenotypic plasticity. New Phytologist, 222(4), 1757–1765.

    Article  Google Scholar 

  • Booth, T. H. (2017). Assessing species climatic requirements beyond the realized niche: Some lessons mainly from tree species distribution modelling. Climate Change, 145(3–4), 259–271.

    Article  Google Scholar 

  • Bozdogan Sert, E., Kaya, E., Adiguzel, F., Cetin, M., Gungor, S., Zeren Cetin, I., & Dinc, Y. (2021). Effect of the surface temperature of surface materials on thermal comfort: A case study of Iskenderun (Hatay, Turkey). Theoretical and Applied Climatology, 144(1), 103–113.

    Article  Google Scholar 

  • Brundu, G., & Richardson, D. M. (2016). Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota, 30, 5–47. https://doi.org/10.3897/neobiota.30.7015. The original publication is available at https://neobiota.pensoft.net. Accessed 5 Mar 2022.

  • Cantürk, U., & Kulaç, Ş. (2021). The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-021-09546-5

    Article  Google Scholar 

  • Cetin, M. (2020). The changing of important factors in the landscape planning occur due to global climate change in temperature, rain and climate types: A case study of Mersin City. Turkish Journal of Agriculture-Food Science and Technology, 8(12), 2695–2701.

    Article  Google Scholar 

  • Cetin, M., & Jawed, A. A. (2022). Variation of Ba concentrations in some plants grown in Pakistan depending on traffic density. Biomass Conversion and Biorefinery, 1–7. https://doi.org/10.1007/s13399-022-02334-2

  • Cetin, M., Sevik, H., Yigit, N., Ozel, H. B., Aricak, B., & Varol, T. (2018). The variable of leaf micromorphogical characters on grown in distinct climate conditions in some landscape plants. Fresenius Environmental Bulletin, 27(5), 3206–3211.

    Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., Senyel Kurkcuoglu, M. A., Kucukpehlivan, T., & Cabuk, A. (2022). Examination of the change in the vegetation around the Kirka Boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 233(7), 1–15.

    Article  CAS  Google Scholar 

  • Dalfes, H. N., Karaca, M., & Sen, O. L. (2007). Climate change scenarios for Turkey. In Climate change & Turkey: Impact, sectoral analyses, socio-economic dimensions. United Nations Development Programme (UNDP) Turkey Office, Turkey.

  • Daniel, C. J., Ter-Mikaelian, M. T., Wotton, B. M., Rayfield, B., & Fortin, M. J. (2017). Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. Forest Ecology and Management, 400, 542–554.

    Article  Google Scholar 

  • Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150–1163.

    Article  Google Scholar 

  • Ertugrul, M., Ozel, H. B., Varol, T., Cetin, M., & Sevik, H. (2019). Investigation of the relationship between burned areas and climate factors in large forest fires in the Canakkale region. Environmental Monitoring and Assessment, 191(12), 737.

    Article  Google Scholar 

  • Ertugrul, M., Varol, T., Ozel, H. B., Cetin, M., & Sevik, H. (2021). Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environmental Monitoring and Assessment, 193(1), 1–17.

    Article  CAS  Google Scholar 

  • ESRI. (2017). ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute.

    Google Scholar 

  • Eurostat. (2018). Air emissions accounts by NACE Rev. 2 activity. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ac_ainah_r2&lang=en. Accessed 20/04/2021

  • Gómez-Pineda, E., Sáenz‐Romero, C., Ortega‐Rodríguez, J. M., Blanco‐García, A., Madrigal‐Sánchez, X., Lindig‐Cisneros, R., ... & Rehfeldt, G. E. (2020). Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecological Applications, 30(2), e02041.

  • Gómez-Pineda, E., Blanco-García, A., Lindig-Cisneros, R., O’Neill, G. A., Lopez-Toledo, L., & Sáenz-Romero, C. (2021). Pinus pseudostrobus assisted migration trial with rain exclusion: Maintaining Monarch Butterfly Biosphere Reserve forest cover in an environment affected by climate change. New Forests, 52(6), 995–1010. https://doi.org/10.1007/s11056-021-09838-1

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965–1978.

    Article  Google Scholar 

  • Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., Ohashi, H., ... & Matsui, T. (2017). Potential distribution of pine wilt disease under future climate change scenarios. PLoS One, 12(8), e0182837.

  • Huang, S., Zheng, X., Ma, L., Wang, H., Huang, Q., Leng, G., ... & Guo, Y. (2020). Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology, 584, 124687.

  • Iverson, L., Knight, K. S., Prasad, A., Herms, D. A., Matthews, S., Peters, M., ... & Almendinger, J. (2016). Potential species replacements for black ash (Fraxinus nigra) at the confluence of two threats: Emerald ash borer and a changing climate. Ecosystems, 19(2), 248-270.

  • Li, J., Fan, G., & He, Y. (2020). Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Science of the Total Environment, 698, 134141.

    Article  CAS  Google Scholar 

  • López-Tirado, J., Vessella, F., Stephan, J., Ayan, S., Schirone, B., & Hidalgo, P. J. (2021). Effect of climate change on potential distribution of Cedrus libani A Rich in the twenty-first century: An Ecological Niche Modeling assessment. New Forests, 52(3), 363–376.

    Article  Google Scholar 

  • Mataracı, T., & Kandemir A. (2018). Abies / Göknar. In Ü. Akkemik (Ed.), Natural-exotic trees and shrubs of Turkey (684 p., pp.  306–314). General Directorate of Forestry Publications.

  • Ning, H., Ling, L., Sun, X., Kang, X., & Chen, H. (2021). Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models. Global Ecology and Conservation, 25, e01420.

    Article  Google Scholar 

  • Oberle, B., Covey, K. R., Dunham, K. M., Hernandez, E. J., Walton, M. L., Young, D. F., & Zanne, A. E. (2018). Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana. Ecosystems, 21(1), 85–97.

    Article  CAS  Google Scholar 

  • Ouyang, L., Arnold, R. J., Chen, S., Xie, Y., He, S., Liu, X., & Zhang, W. (2022). Prediction of the suitable distribution of Eucalyptus grandis in China and its responses to climate change. New Forests, 53(1), 81–99. https://doi.org/10.1007/s11056-021-09845-2

  • Ozel, H. B., Cetin, M., Sevik, H., Varol, T., Isik, B., & Yaman, B. (2021a). The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biologia Futura. https://doi.org/10.1007/s42977-021-00085-1

  • Ozel, H. B., Abo Aisha, A. E. S., Cetin, M., Sevik, H., & Zeren Cetin, I. (2021b). The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Environmental Monitoring and Assessment, 193, 388. https://doi.org/10.1007/s10661-021-09178-9

    Article  CAS  Google Scholar 

  • Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., ... & Terradas, J. (2018). Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany, 152, 49–59.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.

    Article  Google Scholar 

  • Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., ... & van Vuuren, D. P. (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331–345.

    Article  Google Scholar 

  • Quinto, L., Navarro-Cerrillo, R. M., Palacios-Rodriguez, G., Ruiz-Gomez, F., & Duque-Lazo, J. (2021). The current situation and future perspectives of Quercus ilex and Pinus halepensis afforestation on agricultural land in Spain under climate change scenarios. New Forests, 52(1), 145–166.

    Article  Google Scholar 

  • Rahman, M., Islam, M., Wernicke, J., & Bräuning, A. (2018). Changes in sensitivity of tree-ring widths to climate in a tropical moist forest tree in Bangladesh. Forests, 9(12), 761.

    Article  Google Scholar 

  • Reed, T. E., Schindler, D. E., & Waples, R. S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology, 25(1), 56–63.

    Article  Google Scholar 

  • Reeves, M. C., Moreno, A. L., Bagne, K. E., & Running, S. W. (2014). Estimating climate change effects on net primary production of rangelands in the United States. Climatic Change, 126(3–4), 429–442.

    Article  Google Scholar 

  • Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 C. Nature Climate Change, 8(4), 325–332.

    Article  CAS  Google Scholar 

  • Ruiz-Labourdette, D., Schmitz, M. F., & Pineda, F. D. (2013). Changes in tree species composition in Mediterranean mountains under climate change: Indicators for conservation planning. Ecological Indicators, 24, 310–323.

    Article  Google Scholar 

  • Savas, D.S., Sevik, H., Isinkaralar, K. Turkyilmaz, A. & Cetin, M. (2021). The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environ Sci Pollut Res, (2021). https://doi.org/10.1007/s11356-021-14826-1

  • Serkan, S. (2019). İklim Değişikliğinin Kısa Tarihçesi (p. 2019). Lambert Academic Publishing.

    Google Scholar 

  • Sevik, H., & Erturk, N. (2015). Effects of drought stress on germination in fourteen provenances of Pinus brutia Ten. seeds in Turkey. Turkish Journal of Agriculture-Food Science and Technology, 3(5), 294–299.

    Article  Google Scholar 

  • Sevik, H., Cetin, M., Ozel, H. B., Erbek, A., & Cetin, I. Z. (2021). The effect of climate on leaf micromorphological characteristics in some broad-leaved species. Environment, Development and Sustainability, 23(4), 6395–6407.

    Article  Google Scholar 

  • Taylor Aiken, G., Middlemiss, L., Sallu, S., & Hauxwell-Baldwin, R. (2017). Researching climate change and community in neoliberal contexts: An emerging critical approach. Wiley Interdisciplinary Reviews: Climate Change, 8(4), e463.

    Google Scholar 

  • Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., Bielak, K., ... & Falk, W. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430, 485–497.

    Article  Google Scholar 

  • Toczydlowski, A. J., Slesak, R. A., Kolka, R. K., & Venterea, R. T. (2020). Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA. Applied Soil Ecology, 153, 103565.

    Article  Google Scholar 

  • Torres-Dowdall, J., Handelsman, C. A., Reznick, D. N., & Ghalambor, C. K. (2012). Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution: International Journal of Organic Evolution, 66(11), 3432–3443.

    Article  Google Scholar 

  • Turan, E. S. (2018). Turkey’s drought status associated with climate change. Artvin Çoruh University Natural Hazards Application and Research Center Journal of Natural Hazards and Environment, 4(1), 63–69.

    Google Scholar 

  • UNDP. (2019). Small Island nations at the frontline of climate action. Retrieved from http://www.undp.org/content/undp/en/home/news-centre/news/2017/09/18/small-island-nations-at-the-frontline-of-climate-action-.html. Accessed 20/04/2021

  • Varol, T., & Ertugrul, M. (2015). Climate change and forest fire trend in the Aegean and Mediterranean regions of Turkey. Fresenius Environmental Bulletin, 24, 3436–3444.

    CAS  Google Scholar 

  • Varol, T., Gormus, S., Cengiz, S., Ozel, H. B., & Cetin, M. (2019). Determining potential planting areas in urban regions. Environmental Monitoring and Assessment, 191(3), 1–14.

    Article  Google Scholar 

  • Varol, T., Canturk, U., Cetin, M., Ozel, H. B., & Sevik H (2021). Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. Forest Ecology and Management. Forest Ecology and Management, 491(2021), 119199. https://doi.org/10.1016/j.foreco.2021.119199

  • Varol, T., Cetin, M., Ozel, H. B., Sevik, H., & Zeren Cetin, I. (2022). The effects of climate change scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air, and Soil Pollution, 233, 45. https://doi.org/10.1007/s11270-022-05516-w

    Article  CAS  Google Scholar 

  • Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J., & Retana, J. (2018). Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management, 407, 16–22.

    Article  Google Scholar 

  • Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M., Asao, S., ... & Jain, A. K. (2019). Decadal biomass increment in early secondary succession woody ecosystems is increased by CO 2 enrichment. Nature Communications, 10(1), 1–13.

    Article  CAS  Google Scholar 

  • Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., & Sturm, M. (2018). Snow in the changing sea-ice systems. Nature Climate Change, 8(11), 946–953.

    Article  Google Scholar 

  • Yigit, N., Sevik, H., Cetin, M., & Kaya, N. (2016). Determination of the effect of drought stress on the seed germination in some plant species. In Water stress in plants (chapter 3, pp. 43–62). InTech, August. https://books.google.com.tr/books?hl=tr&lr=&id=pHqQDwAAQBAJ&oi=fnd&pg=PA43&dq=Determination+of+the+effect+of+drought+stress+on+the+seed+germination+in+some+plant+species&ots=mhndeOxPId&sig=kDbalMMdHwlKL0pLdvLnBKe9w7U&. Accessed 5 Mar 2022.

  • Yigit, N., Mutevelli, Z., Sevik, H., Onat, S. M., Ozel, H. B., Cetin, M., & Olgun, C. (2021). Identification of some fiber characteristics in Rosa sp. and Nerium oleander L. wood grown under different ecological conditions. BioResources, 16(3), 5862–5874. https://doi.org/10.15376/biores.14.3.7015-7024

    Article  CAS  Google Scholar 

  • Yu, L., Cao, M., & Li, K. (2006). Climate-induced changes in the vegetation pattern of China in the 21st century. Ecological Research, 21(6), 912–919.

    Article  Google Scholar 

  • Zeren Cetin, I., & Sevik, H. (2020). Investigation of the relationship between bioclimatic comfort and land use by using GIS and RS techniques in Trabzon. Environmental Monitoring and Assessment, 192(2), 1–14.

    Article  CAS  Google Scholar 

  • Zeren Cetin, I., Ozel, H. B., & Varol, T. (2020). Integrating of settlement area in urban and forest area of Bartin with climatic condition decision for managements. Air Quality, Atmosphere & Health, 13(8), 1013–1022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is produced from the MSc thesis titled as “Possible Effects of Global Climate Change on Distribution Areas of Fir (Abies spp.) Species in Türkiye” conducted at Kastamonu University, Graduate School of Science and Engineering, Sustainable Agriculture and Natural Plant Resources Department.

The authors thank the support of the Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Forest Engineering and the General Directorate of Meteorology for their prompt responses to our requests.

Funding

Tubitak YOK 100/2000 Scholarship

Author information

Authors and Affiliations

Authors

Contributions

Halil, Tugrul, Hakan, Oktay, Ilknur designed the study and performed the experiments; and Tugrul, Oktay, Ilknur, Mehmet performed the experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Ilknur Zeren Cetin.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, O., Cetin, M., Varol, T. et al. Altitudinal Migration of Species of Fir (Abies spp.) in Adaptation to Climate Change. Water Air Soil Pollut 233, 385 (2022). https://doi.org/10.1007/s11270-022-05851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05851-y

Keywords

Navigation