Skip to main content

Advertisement

Log in

Process Optimization of Steel Pickling Waste Liquor Treated by Electrochemical Synthesis of Fe3O4

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A simple electrochemical method is proposed for recovering iron from steel pickling waste liquor with graphite plates as electrodes. In this study, response surface methodology (RSM) was used to optimize the experimental conditions and assess the effect of the process variables, including initial pH, reaction temperature (T), current density (J), and reaction time (t), on total iron (TFe) removal. The model obtained by analyzing data with Design Expert 8.0.6 was very significant, and pH had the most significant effect on TFe removal. The optimum reaction conditions were pH = 9, T = 35 °C, J = 20.07 mA/cm2, and t = 30 min, under which conditions the removal rate was more than 99.99%, the residual TFe = 0.28 mg/L at the initial TFe of 10 g/L, and the obtained product had strong magnetism. Therefore, the method of electrochemical synthesis of Fe3O4 is promising in the treatment and recycling of steel pickling waste liquor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agrawal, A., & Sahu, K. K. (2009). An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials, 171(1–3), 61–75.

    Article  CAS  Google Scholar 

  • Cabrera, L., Gutierrez, S., Menendez, N., Morales, M. P., & Herrasti, P. (2008). Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochimica Acta, 53(8), 3436–3441.

    Article  CAS  Google Scholar 

  • Chatterjee, J., Haik, Y., & Chen, C. J. (2003). Size dependent magnetic properties of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 257(1), 113–118.

    Article  CAS  Google Scholar 

  • Chen, D., Mei, C. Y., Yao, L. H., Jin, H. M., Qian, G. R., & Xu, Z. P. (2011). Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. Journal of Hazardous Materials, 192(3), 1675–1682.

    Article  CAS  Google Scholar 

  • Costas, M., Chen, K., & Que, L., Jr. (2000). Biomimetic nonheme iron catalysts for alkane hydroxylation. Coordination Chemistry Reviews, 200, 517–544.

    Article  Google Scholar 

  • Dai, Z., Meiser, F., & Möhwald, H. (2005). Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. Journal of Colloid and Interface Science, 288(1), 298–300.

    Article  CAS  Google Scholar 

  • Deatsch, A. E., & Evans, B. A. (2014). Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 354, 163–172.

    Article  CAS  Google Scholar 

  • Fajaroh, F., Setyawan, H., Widiyastuti, W., & Winardi, S. (2012). Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Advanced Powder Technology, 23(3), 328–333.

    Article  CAS  Google Scholar 

  • Franger, S., Berthet, R. P., & Berthon, J. (2004). Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 8(4), 218–223.

    Article  CAS  Google Scholar 

  • Hamdy, M. S., Mul, G., Jansen, J. C., Ebaid, A., Shan, Z., Overweg, A. R., & Maschmeyer, T. (2005). Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in Friedel-Crafts benzylation of benzene. Catalysis Today, 100(3–4), 255–260.

    Article  CAS  Google Scholar 

  • Hayashi, K., Nakamura, M., Sakamoto, W., Yogo, T., Miki, H., Ozaki, S., Abe, M., Matsumoto, T., & Ishimura, K. (2013). Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 3(6), 366–376.

    Article  CAS  Google Scholar 

  • Huang, G., Dou, P., Zhang, Z., & Yan, J. (2018). Removal of cobalt from liquid radioactive waste by in situ electrochemical synthesis of ferrite. Journal of Radioanalytical and Nuclear Chemistry, 316(1), 61–70.

    Article  CAS  Google Scholar 

  • Huang, G., Chen, J., & Gao, S. (2020). Treatment of simulated steel pickling waste liquor by electrochemical synthesis of Fe3O4. Water, Air, & Soil Pollution, 231(8), 1–11.

    Article  Google Scholar 

  • Ibrahim, M., Serrano, K. G., Noe, L., Garcia, C., & Verelst, M. (2009). Electro-precipitation of magnetite nanoparticles: An electrochemical study. Electrochimica Acta, 55(1), 155–158.

    Article  CAS  Google Scholar 

  • Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L., & Labhasetwar, V. (2005). Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular Pharmaceutics, 2(3), 194–205.

    Article  CAS  Google Scholar 

  • Lan, W., Qiu, H., Zhang, J., Yu, Y., Yang, K., Liu, Z., & Ding, G. (2009). Characteristic of a novel composite inorganic polymer coagulant–PFAC prepared by hydrochloric pickle liquor. Journal of Hazardous Materials, 162(1), 174–179.

    Article  CAS  Google Scholar 

  • Legros, J., & Bolm, C. (2004). Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide under simple reaction conditions. Angewandte Chemie International Edition, 43(32), 4225–4228.

    Article  CAS  Google Scholar 

  • Lin, R., & Farmer, P. J. (2001). O atom transfer from nitric oxide catalyzed by Fe (TPP). Journal of the American Chemical Society, 123(6), 1143–1150.

    Article  CAS  Google Scholar 

  • Manrique-Julio, J., Machuca-Martinez, F., Marriaga-Cabrales, N., & Pinzon-Cardenas, M. (2016). Production of magnetite by electrolytic reduction of ferric oxyhydroxide. Journal of Magnetism and Magnetic Materials, 401, 81–85.

    Article  CAS  Google Scholar 

  • Mazario, E., Sánchez-Marcos, J., Menéndez, N., Herrasti, P., García-Hernández, M., & Muñoz-Bonilla, A. (2014). One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Advances, 4(89), 48353–48361.

    Article  CAS  Google Scholar 

  • Melnig, V., & Ursu, L. (2011). Poly (amidehydroxyurethane) template magnetite nanoparticles electrosynthesis: I. Electrochemical aspects and identification. Journal of Nanoparticle Research, 13(6), 2509–2523.

    Article  CAS  Google Scholar 

  • Mürbe, J., Rechtenbach, A., & Töpfer, J. (2008). Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Materials Chemistry and Physics, 110(2–3), 426–433.

    Article  Google Scholar 

  • Negro, C., Blanco, P., Dufour, J., Latorre, R., Formoso, A., & Lopez, F. (1993). The treatment of hydrochloric acid waste pickle liquors. Journal of Environmental Science & Health Part A, 28(8), 1651–1667.

    Google Scholar 

  • Regel-Rosocka, M. (2010). A review on methods of regeneration of spent pickling solutions from steel processing. Journal of Hazardous Materials, 177(1–3), 57–69.

    Article  CAS  Google Scholar 

  • Rodríguez-López, A., Paredes-Arroyo, A., Mojica-Gomez, J., Estrada-Arteaga, C., Cruz-Rivera, J. J., Elías Alfaro, C. G., & Antaño-López, R. (2012). Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses. Journal of Nanoparticle Research, 14(8), 1–9.

    Article  Google Scholar 

  • Rong, H., Gao, B., Li, R., Wang, Y., Yue, Q., & Li, Q. (2014). Effect of dose methods of a synthetic organic polymer and PFC on floc properties in dyeing wastewater coagulation process. Chemical Engineering Journal, 243, 169–175.

    Article  CAS  Google Scholar 

  • Starowicz, M., Starowicz, P., Żukrowski, J., Przewoźnik, J., Lemański, A., Kapusta, C., & Banaś, J. (2011). Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 13(12), 7167–7176.

    Article  CAS  Google Scholar 

  • Sun, Y., Walspurger, S., Tessonnier, J. P., Louis, B., & Sommer, J. (2006). Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15: A very active catalyst for Friedel-Crafts alkylations. Applied Catalysis A: General, 300(1), 1–7.

    Article  CAS  Google Scholar 

  • Tamura, H., Katayama, N., & Furuichi, R. (1997). The Co2+ adsorption properties of Al2O3, Fe2O3, Fe3O4, TiO2, and MnO2 evaluated by modeling with the Frumkin isotherm. Journal of Colloid and Interface Science, 195(1), 192–202.

    Article  CAS  Google Scholar 

  • Wan, G., Lv, F., Yang, Y., Wang, X., Jawaid, M., & Kenawy, E. R. (2016). Synthesis of iron oxide yellow from spent pickling solutions. MATEC Web of Conferences, 67, 06091.

    Article  Google Scholar 

  • Ying, T. Y., Yiacoumi, S., & Tsouris, C. (2002). An electrochemical method for the formation of magnetite particles. Journal of Dispersion Science and Technology, 23(4), 569–576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the help of the analysts from Center of Analysis and Test, Laboratory for Resource and Environmental Education, and School of Chemical Engineering in East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtuan Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Chen, J. & Huang, G. Process Optimization of Steel Pickling Waste Liquor Treated by Electrochemical Synthesis of Fe3O4. Water Air Soil Pollut 233, 365 (2022). https://doi.org/10.1007/s11270-022-05835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05835-y

Keywords

Navigation