Skip to main content
Log in

The Toxicological Effects and Removal Characterization of Carbamazepine Using Chlorella vulgaris in Aqueous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carbamazepine, as one of the pharmaceutical and personal care products, is highly persistent in aquatic environments. This study investigated the effects of carbamazepine on the physiology and photosynthetic characteristics of Chlorella vulgaris, and the removal of carbamazepine by C. vulgaris was evaluated. The results showed that the growth and the photosynthesis activity of C. vulgaris decreased with the increase in carbamazepine concentration, while superoxide dismutase and catalase activities were markedly promoted. It was also revealed that C. vulgaris could result in efficient removal of carbamazepine with a concentration of 40 mg/L. The removal efficiency reached 79.16 ± 3.98% after 8-day exposure. Pathway analysis revealed that 77.05 ± 3.91% of carbamazepine was removed by biodegradation, and bioaccumulation and biosorption contributed only 1.47 ± 0.14% and 0.37 ± 0.06%, respectively. The research implied that biodegradation by C. vulgaris might be an efficient method to treat carbamazepine-contaminated water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Abd, A., Issa, E. S., Salama, M., & Fawzy, M. A. (2013). Alterations in some metabolic activities of Scenedesmus quadricauda and Merismopedia glauca in response to glyphosate herbicide. Ecotoxicology and Environmental Safety, 201(3), 1–7.

    Google Scholar 

  • Al Khalili, Y., Sekhon, S., & Jain, S. (2021). Carbamazepine toxicity. In StatPearls. StatPearls Publishing.

  • Bahlmann, A., Brack, W., Schneider, R. J., & Krauss, M. (2014). Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Research, 57, 104–114.

    Article  CAS  Google Scholar 

  • Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83(3), 463–468.

    Article  CAS  Google Scholar 

  • Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., & Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62(3), 667–683.

    Article  CAS  Google Scholar 

  • Freitas, R., Almeida, A., Pires, A., Velez, C., Calisto, V., Schneider, R. J., Esteves, V. I., Wrona, F. J., Figueira, E., & Soares, A. M. (2015). The effects of carbamazepine on macroinvertebrate species: Comparing bivalves and polychaetes biochemical responses. Water Research, 85, 137–147.

    Article  CAS  Google Scholar 

  • Gao, Q. T., Wong, Y. S., & Tam, N. F. Y. (2011). Removal and biodegradation of nonylphenol by different Chlorella species. Marine Pollution Bulletin, 63(5–12), 445–451.

    Article  CAS  Google Scholar 

  • García-Morales, I., Rieger, J. S., Gil-Nagel, A., & Fernández, J. L. H. (2007). Antiepileptic drugs: From scientific evidence to clinical practice. The Neurologist, 13(6), S20–S28.

    Article  Google Scholar 

  • Guo, H., Zhou, X., Zhang, Y., Yao, Q., Qian, Y., Chu, H., & Chen, J. (2020). Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: Performance, mechanism and toxicity. Journal of Environmental Sciences, 91, 10–21.

    Article  Google Scholar 

  • Guo, R., Lu, D., Liu, C., Hu, J., Wang, P., & Dai, X., (2022). Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae). Ecotoxicology, 1–15.

  • He, N., Liu, Z., Sun, X., Wang, S., Liu, W., Sun, D., & Duan, S. (2020). Phytotoxicity, bioaccumulation, and degradation of nonylphenol in different microalgal species without bacterial influences. International Journal of Molecular Sciences, 21(4), 1338.

    Article  CAS  Google Scholar 

  • Hena, S., Gutierrez, L., & Croué, J. P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403, 124041.

    Article  CAS  Google Scholar 

  • Henriques, F. S. (2009). Leaf chlorophyll fluorescence: Background and fundamentals for plant biologists. The Botanical Review, 75(3), 249–270.

    Article  Google Scholar 

  • Huerta, B., Rodriguez-Mozaz, S., Nannou, C., Nakis, L., Ruhí, A., Acuña, V., Sabater, S., & Barcelo, D. (2016). Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Science of the Total Environment, 540, 241–249.

    Article  CAS  Google Scholar 

  • Kabra, A. N., Ji, M. K., Choi, J., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2014). Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environmental Science and Pollution Research, 21(21), 12270–12278.

    Article  CAS  Google Scholar 

  • Li, Y., Zhou, W., Hu, B., Min, M., Chen, P., & Ruan, R. R. (2011). Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology, 102, 10861–10867.

    Article  CAS  Google Scholar 

  • Lu, Y., Jin, H., Shao, B., Xu, H., & Xu, X. (2019). Physiological and biochemical effects of triclocarban stress on freshwater algae. SN Applied Sciences, 1(12), 1–7.

    Article  CAS  Google Scholar 

  • Matamoros, V., Uggetti, E., García, J., & Bayona, J. M. (2016). Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. Journal of Hazardous Materials, 301, 197–205.

    Article  CAS  Google Scholar 

  • Nkoom, M., Lu, G., Liu, J., Yang, H., & Dong, H. (2019). Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. Ecotoxicology and Environmental Safety, 172, 11–18.

    Article  CAS  Google Scholar 

  • Painter, M. M., Buerkley, M. A., Julius, M. L., Vajda, A. M., Norris, D. O., Barber, L. B., Furlong, E. T., Schultz, M. M., & Schoenfuss, H. L. (2009). Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales Premelas). Environmental Toxicology and Chemistry, 28, 2677–2684.

    Article  CAS  Google Scholar 

  • Ricky, R., & Shanthakumar, S. (2022). Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater–A review. Journal of Environmental Management, 302, 113998.

    Article  CAS  Google Scholar 

  • Rocha, S., Gomes, D., Lima, M., Bronze-da-Rocha, E., & Santos-Silva, A. (2015). Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radical Research, 49(8), 990–1003.

    Article  CAS  Google Scholar 

  • Silva, M., Feijão, E., de Carvalho, R. D. C., Duarte, I. A., Matos, A. R., Cabrita, M. T., Barreiro, A., Lemos, M. F. L., Novais, S. C., Marques, J. C., Caçador, I., Santos, P. R., Fonseca, V. F., & Duarte, B. (2020). Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutum. Marine Environmental Research, 161, 105109.

    Article  CAS  Google Scholar 

  • Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95.

    Article  CAS  Google Scholar 

  • Sun, H., Lü, K., Minter, E. J., Chen, Y., Yang, Z., & Montagnes, D. J. (2012). Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. Journal of Hazardous Materials, 221, 213–219.

    Article  Google Scholar 

  • Tsiaka, P., Tsarpali, V., Ntaikou, I., Kostopoulou, M. N., Lyberatos, G., & Dailianis, S. (2013). Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology, 22, 1208–1220.

    Article  CAS  Google Scholar 

  • Tunali, M., Uzoefuna, E. N., Tunali, M. M., & Yenigun, O. (2020). Effect of microplastics and microplastic-metal combinations on growth and chlorophyll-a concentration of Chlorella vulgaris. Science of the Total Environment, 743, 140479.

    Article  CAS  Google Scholar 

  • Vannini, C., Domingo, G., Marsoni, M., De Mattia, F., Labra, M., Castiglioni, S., & Bracale, M. (2011). Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquatic Toxicology, 101(2), 459–465.

    Article  CAS  Google Scholar 

  • Wang, X., Li, X., & Li, Y. (2007). A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnology Letters, 29(10), 1599–1603.

    Article  CAS  Google Scholar 

  • Wang, H., Jin, M., Mao, W., Chen, C., Fu, L., Li, Z., Du, S., Liu, H., & Liu, H. (2020a). Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Science of the Total Environment., 707, 136176.

    Article  CAS  Google Scholar 

  • Wang, Q., Liu, W., Li, X., Wang, R., & Zhai, J. (2020b). Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis. Science of the Total Environment, 706, 135686.

    Article  CAS  Google Scholar 

  • Xiong, J. Q., Kurade, M. B., Abou-Shanab, R. A., Ji, M. K., Choi, J., Kim, J. O., & Jeon, B. H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology, 205, 183–190.

    Article  CAS  Google Scholar 

  • Xiong, J. Q., Kurade, M. B., & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chemical Engineering Journal, 313, 1251–1257.

    Article  CAS  Google Scholar 

  • Xu, D., Xie, Y., & Li, J. (2022). Toxic effects and molecular mechanisms of sulfamethoxazole on Scenedesmus obliquus. Ecotoxicology and Environmental Safety, 232, 113258.

    Article  CAS  Google Scholar 

  • Yao, M., Duan, L., Wei, J., Qian, F., & Hermanowicz, S. W. (2020). Carbamazepine removal from wastewater and the degradation mechanism in a submerged forward osmotic membrane bioreactor. Bioresource Technology, 314, 123732.

    Article  CAS  Google Scholar 

  • Zhang, Y. J., Geißen, S. U., & Gal, C. (2008a). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73, 1151–1161.

    Article  CAS  Google Scholar 

  • Zhang, Y., Geißen, S. U., & Gal, C. (2008b). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhang, M., Lin, K. F., Sun, W. F., Xiong, B., Guo, M. J., Cui, X. H., & Fu, R. B. (2012). Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environmental Toxicology and Pharmacology., 33, 344–352.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fujian Higher School Industry-University Research Joint Innovation Project (2021Y4005) and Scientific Climbing Plan of Xiamen University of Technology (XPDKT20016, XPDKT19026).

Author information

Authors and Affiliations

Authors

Contributions

Yicheng Wu designed and performed the experiments and wrote the original draft. Yujian, Zhouyi Zhou, Lihui Ou, and Haiyan Fu helped analyze all the data. Aili Yang was responsible for supervision and validation. All authors discussed and approved the manuscript.

Corresponding author

Correspondence to Aili Yang.

Ethics declarations

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhou, Z., Ou, L. et al. The Toxicological Effects and Removal Characterization of Carbamazepine Using Chlorella vulgaris in Aqueous Media. Water Air Soil Pollut 233, 368 (2022). https://doi.org/10.1007/s11270-022-05828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05828-x

Keywords

Navigation