Skip to main content
Log in

Persistence of Two Common Chemical Oxidants for Soil and Groundwater Remediation: Impacts of Water Chemistry and Subsurface Minerals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To combat groundwater pollution, in situ chemical oxidation (ISCO) has been extensively adopted to degrade groundwater pollutants. A critical factor associated with the success of ISCO is the stability (or persistence) of the chemical oxidant. A higher oxidant stability can result in a higher integrity and a sustained oxidation capacity for the oxidants. Both potassium permanganate (KMnO4) and persulfate (PS) are two most commonly employed chemical oxidants for ISCO operations. Although a number of experimental studies have been conducted to evaluate the persistence of these two oxidants, systematic investigations of the persistence of KMnO4 and PS and especially the impact of different subsurface materials on oxidant stability are still limited. To fill these knowledge gaps, the stability of both KMnO4 and PS oxidants has been systemically evaluated in this study. For each type of oxidant, the impact of solution pH and the presence of matrix anions on oxidant stability were evaluated. Furthermore, the persistence of these oxidants was examined in the presence of a number of soils and subsurface minerals with the natural oxidant demand value of each subsurface material being determined. It is found that KMnO4 can directly react with the reducing constituents in the soils via chemical oxidation where PS requires to be activated first in order to produce sulfate radical to react with reducing species. This study provides the essential information of the stability of KMnO4 and PS under different physiochemical conditions and in the presence of different subsurface materials for groundwater ISCO treatment. The conclusions from this study can substantially facilitate the ISCO operations by use of KMnO4 and PS in a more efficient and cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supporting information file.

References

  • Ahmad, M., Teel, A. L., & Watts, R. J. (2010). Persulfate activation by subsurface minerals. Journal of Contaminant Hydrology, 115, 34–45.

    Article  CAS  Google Scholar 

  • Andrade, L., O’Malley, K., Hynds, P., O’Neill, E., & O’Dwyer, J. (2019). Assessment of two behavioural models (HBM and RANAS) for predicting health behaviours in response to environmental threats: Surface water flooding as a source of groundwater contamination and subsequent waterborne infection in the Republic of Ireland. Science of the Total Environment, 685, 1019–1029.

    Article  CAS  Google Scholar 

  • Cecconet, D., Sabba, F., Devecseri, M., Callegari, A., & Capodaglio, A. G. (2020). In situ groundwater remediation with bioelectrochemical systems: A critical review and future perspectives. Environment International, 137, 105550.

    Article  CAS  Google Scholar 

  • Cha, K. Y., Crimi, M., Urynowicz, M. A., & Borden, R. C. (2012). Kinetics of permanganate consumption by natural oxidant demand in aquifer solids. Environmental Engineering Science, 29, 646–653.

    Article  CAS  Google Scholar 

  • Cui, Y., Ning, Y., Chen, G., Zhang, L., Wang, X., Cheng, W., Hou, H., Zhang, C., & Wang, J. (2022). Characteristics of historical underground storage sites of capacitors containing polychlorinated biphenyls. Water, Air, and Soil Pollution, 233, 89. https://doi.org/10.1007/s11270-022-05562-4

    Article  CAS  Google Scholar 

  • Dash, S., Patel, S., & Mishra, B. K. (2009). Oxidation by permanganate: Synthetic and mechanistic aspects. Tetrahedron, 65, 707–739.

    Article  CAS  Google Scholar 

  • Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643–657.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science and Technology, 44, 6423–6428.

    Article  CAS  Google Scholar 

  • Gu, D., Dong, J., Zhang, Y., Zhu, L., Yan, C., Wu, H., & Wang, B. (2018). An insight into pathways of solar-driven STEP oxidation of nitrobenzene by an integrated in situ thermoelectrochemical microreactor-analyzer. Journal of Cleaner Production, 200, 1026–1033.

    Article  CAS  Google Scholar 

  • Guo, Z., Brusseau, M. L., & Fogg, G. E. (2019). Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume. Journal of Hazardous Materials, 365, 796–803.

    Article  CAS  Google Scholar 

  • Hartog, N., Griffioen, J., & van der Weijden, C. H. (2002). Distribution and reactivity of O2-reducing components in sediments from a layered aquifer. Environmental Science and Technology, 36, 2338–2344.

    Article  CAS  Google Scholar 

  • Hønning, J., Broholm, M. M., & Bjerg, P. L. (2007a). Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials. Journal of Contaminant Hydrology, 90, 221–239.

    Article  Google Scholar 

  • Hønning, J., Broholm, M. M., & Bjerg, P. L. (2007b). Role of diffusion in chemical oxidation of PCE in a dual permeability system. Environmental Science and Technology, 41, 8426–8432.

    Article  Google Scholar 

  • Hou, D., & Li, F. (2017). Complexities surrounding China’s soil action plan. Land Degradation Development, 28, 2315–2320.

    Article  Google Scholar 

  • Jiang, J., Gao, Y., Pang, S. Y., Lu, X. T., Zhou, Y., Ma, J., & Wang, Q. (2015). Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate. Environmental Science and Technology, 49, 520–528.

    Article  CAS  Google Scholar 

  • Kao, C. M., Huang, K. D., Wang, J. Y., Chen, T. Y., & Chien, H. Y. (2008). Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study. Journal of Hazardous Materials, 153, 919–927.

    Article  CAS  Google Scholar 

  • Liao, X., Zhao, D., & Yan, X. (2011). Determination of potassium permanganate demand variation with depth for oxidation–remediation of soils from a PAHs-contaminated coking plant. Journal of Hazardous Materials, 193, 164–170.

    Article  CAS  Google Scholar 

  • Liu, J., Jiang, S., Chen, D., Dai, G., Wei, D., & Shu, Y. (2020). Activation of persulfate with biochar for degradation of bisphenol A in soil. Chemical Engineering Journal, 381, 122637.

    Article  CAS  Google Scholar 

  • Ma, J., Li, H., Chi, L., Chen, H., & Chen, C. (2017). Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere, 189, 86–93.

    Article  CAS  Google Scholar 

  • Ma, J., Yang, Y., Jiang, X., Xie, Z., Li, X., Chen, C., & Chen, H. (2018a). Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere, 190, 296–306.

    Article  CAS  Google Scholar 

  • Ma, J., Xia, X., Ma, Y., Luo, Y., & Zhong, Y. (2018b). Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosphere, 205, 41–44.

    Article  CAS  Google Scholar 

  • Ma, J., Yang, X., Jiang, X., Wen, J., Li, J., Zhong, Y., Chi, L., & Wang, Y. (2020). Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 389, 123422.

    Article  CAS  Google Scholar 

  • Magalhães, V. M. A., Aranha, R. M., Mendes, G. P., Soares, L. C. R., Yoshikawa, N. K., Nascimento, C. A. O., Vianna, M. M. G. R., & Chiavone-Filho, O. (2022). Homogeneous and heterogeneous advanced oxidation processes: Treatability studies on artificially contaminated soils with creosote. Water, Air, and Soil Pollution, 233, 29. https://doi.org/10.1007/s11270-022-05498-9

    Article  CAS  Google Scholar 

  • Mohler, R. E., Ahn, S., O’Reilly, K., Zemo, D. A., Devine, C. E., Magaw, R., & Sihota, N. (2020). Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC×GC-TOFMS and Orbitrap ESI-MS. Chemosphere, 244, 125504.

    Article  CAS  Google Scholar 

  • Mumford, K. G., Thomson, N. R., & Allen-King, R. M. (2005). Bench-scale investigation of permanganate natural oxidant demand kinetics. Environmental Science and Technology, 39, 2835–2840.

    Article  CAS  Google Scholar 

  • O’Connor, D., Hou, D., Sik, Y., Song, Y., Sarmah, A. K., Li, X., & Tack, F. M. G. (2018). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of Controlled Release, 283, 200–213.

    Article  Google Scholar 

  • Petri, B. G., Watts, R. J., Tsitonaki, A., Crimi, M., Thomson, N. R., & Teel, A. L. (2011). In situ chemical oxidation for groundwater remediation. SERDP/ESTCP Environmental Remediation Technology, 3, 89–146.

    Article  Google Scholar 

  • Sánchez-Bernal, E. I., Ortega-Escobar, H. M., Can-Chulim, Á., Ortega-Baranda, V., Camacho-Escobar, M. A., & Mancilla-Villa, O. R. (2022). Chemical quality of waters of the Atoyac-Verde river as it passes through forest ecosystems of Oaxaca. Mexico. Water Air Soil Pollut, 233, 93. https://doi.org/10.1007/s11270-022-05515-x

    Article  CAS  Google Scholar 

  • Schmidt, J. T., Ahmad, M., Teel, A. L., & Watts, R. J. (2011). Hydrogen peroxide stabilization in one-dimensional flow columns. Journal of Contaminant Hydrology, 126, 1–7.

    Article  CAS  Google Scholar 

  • Speight, JG. Natural water remediation: Chemistry and technology. Butterworth-Heinemann 2019

  • Sra, K. S., Thomson, N. R., & Barker, J. F. (2010). Persistence of persulfate in uncontaminated aquifer materials. Environmental Science and Technology, 44, 3098–3104.

    Article  CAS  Google Scholar 

  • Sra, K. S., Thomson, N. R., & Barker, J. F. (2014). Stability of activated persulfate in the presence of aquifer solids. Soil Sediment Contam, 23, 820–837.

    Article  CAS  Google Scholar 

  • Teel, A. L., Ahmad, M., & Watts, R. J. (2011). Persulfate activation by naturally occurring trace minerals. Journal of Hazardous Materials, 196, 153–159.

    Article  CAS  Google Scholar 

  • Teel, A. L., Elloy, F. C., & Watts, R. K. (2016). Persulfate activation during exertion of total oxidant demand. Chemosphere, 158, 184–192.

    Article  CAS  Google Scholar 

  • Urynowicz, M. A. (2008). In situ chemical oxidation with permanganate: Assessing the competitive interactions between target and nontarget compounds. Soil Sediment Contam, 17, 53–62.

    Article  CAS  Google Scholar 

  • Urynowicz, M. A., Balu, B., & Udayasankar, U. (2008). Kinetics of natural oxidant demand by permanganate in aquifer solids. Journal of Contaminant Hydrology, 96, 187–194.

    Article  CAS  Google Scholar 

  • USEPA, Superfund remedy report, United States Environmental Protection Agency 2013, 14th Edition

  • Watts, R. J., & Teel, A. L. (2006). Treatment of contaminated soils and groundwater using ISCO. J Hazard Toxic Radioact Waste, 10, 2–9.

    Article  CAS  Google Scholar 

  • Xu, X., & Thomson, N. R. (2009). A long-term bench-scale investigation of permanganate consumption by aquifer materials. Journal of Contaminant Hydrology, 110, 73–86.

    Article  CAS  Google Scholar 

  • Zhang, S., Mao, G., Crittenden, J., Liu, X., & Du, H. (2017). Groundwater remediation from the past to the future: A bibliometric analysis. Water Research, 119, 114–125.

    Article  CAS  Google Scholar 

  • Zhang, X., Gu, X., Lu, S., Miao, Z., Xu, M., Fu, X., Danish, M., Brusseau, M. L., Qiu, Z., & Sui, Q. (2016). Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid. Frontiers of Environmental Science & Engineering, 10, 502–512.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the sponsorship of National Natural Science Foundation of China (21878332, 42177042, and 21906188), CNPC Research Institute of Safety and Environment Technology, PetroChina Innovation Foundation (2018D-5007-0607), Science and Technology Development Fund, Macao S.A.R (FDCT) (0141/2019/A3 and 0024/2019/AMJ), Multi-Year Research Grant provided by University of Macau (MYRG2020-00202-FST), and Science Foundation of China University of Petroleum-Beijing (2462022QNXZ006, 2462022YXZZ011).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agree to the published version of the manuscript. JM: supervision, conceptualization, writing—review & editing, and funding acquisition; JW: investigation and formal analysis; XY: methodology; YL: validation; GZ: investigation; SL: investigation; HL: model simulation; GY: model simulation; HD: visualization; PZ: writing—original draft and writing—review & editing.

Corresponding authors

Correspondence to Jie Ma or Ping Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 194 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wen, J., Yang, X. et al. Persistence of Two Common Chemical Oxidants for Soil and Groundwater Remediation: Impacts of Water Chemistry and Subsurface Minerals. Water Air Soil Pollut 233, 326 (2022). https://doi.org/10.1007/s11270-022-05824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05824-1

Keywords

Navigation