Skip to main content
Log in

Microcontaminants Removal in Constructed Wetlands with Different Baffle Arrangements and Cultivated with Pennisetum setaceum

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the potential of horizontal subsurface flow constructed wetlands (HSSF-CWs) with different arrangements of baffles inside and cultivated with fountain grass (Pennisetum setaceum) in the removal of microcontaminants from wastewater from a university campus. The HSSF-CWs were made of fiberglass with three different configurations: CW-A without baffles; CW-B with baffles fixed to the sides; and the CW-C with baffles fixed above and below the reactor. It was analyzed the contaminants ibuprofen (IBU), acetaminophen (PAR), 4-octylphenol (4OC), caffeine (CAF), 4-nonylphenol (4NP), naproxen (NPX), bisphenol-A (BPA), diclofenac (DCF), estrone (E1), estradiol (E2), ethinylestradiol (EE2), and estriol (E3) by pre-concentration using Strata SAX cartridge and determined by gas chromatography coupled with mass spectrometry. Microcontaminants were monitored monthly between November/2018 and April/2019. Among the twelve microcontaminants evaluated, the endocrine disrupters 4NP and EE2 were not identified in any of the samples. In the affluent, the average concentrations ranged from 87.3 to 2559.2 ng L−1 for pharmaceuticals, 584.6 to 1658.3 ng L−1 for caffeine, and 49.1 to 584 ng L−1 for endocrine disruptors. The CWs with different baffle arrangements were efficient in removing the organic pollutants evaluated. Caffeine stimulant was the contaminant that presented the highest removal, followed by pharmaceuticals, and endocrine disruptors. Considering the risks related to the presence of these contaminants in wastewater, the results from this work represent an important contribution for studies related with the microcontaminants removal in HSSF-CW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Aalam, T., & Khalil, N. (2019). Performance of horizontal sub-surface flow constructed wetlands with different flow patterns using dual media for low-strength municipal wastewater: A case of pilot scale experiment in a tropical climate region. Journal of Environmental Science and Health, Part A Environmental Science, 54, 1245–1253. https://doi.org/10.1080/10934529.2019.1635857

    Article  CAS  Google Scholar 

  • Abdel-Wareth, M. T. A., & Sayed, S. S. M. (2019). Reprotoxicity of 4-nonylphenol to Biomphalaria alexandrina snails at certain temperatures. Environmental Science and Pollution Research, 26, 18533–18540. https://doi.org/10.1007/s11356-019-05142-w

    Article  CAS  Google Scholar 

  • Arunbabu, V., Sruthy, S., Antony, I., & Ramasamy, E. V. (2015). Sustainable greywater management with Axonopus compressus (broadleaf carpet grass) planted in sub surface flow constructed wetlands. Journal of Water Process Engineering, 7, 153–160. https://doi.org/10.1016/j.jwpe.2015.06.004

    Article  Google Scholar 

  • Ávila, A., Nivala, J., Olsson, L., Kassa, K., Headley, T., Mueller, R. A., Bayona, J. M., & García, J. (2014). Emerging organic contaminants in vertical subsurface flow constructed wetlands: Influence of media size, loading frequency and use of active aeration. Science of the Total Environment, 494–495, 211–217. https://doi.org/10.1016/j.scitotenv.2014.06.128

    Article  CAS  Google Scholar 

  • Ávila, C., Bayona, J. M., Martín, I., Salas, J. J., & García, J. (2015). Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecological Engineering, 80, 108–116. https://doi.org/10.1016/j.ecoleng.2014.07.056

    Article  Google Scholar 

  • Aymerich, I., Acuña, V., Barceló, D., García, M. J., Petrovic, M., Poch, M., Rodriguez-Mozaz, S., Rodríguez-Roda, I., Sabater, S., von Schiller, D., & Corominas, Ll. (2016). Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem. Water Research, 100, 126–136. https://doi.org/10.1016/j.watres.2016.04.022

    Article  CAS  Google Scholar 

  • Belhaj, D., Baccarb, R., Jaabiri, I., Bouzid, J., Kallel, M., Ayadi, H., & Zhou, J. L. (2015). Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). Science of the Total Environment, 505, 154–160. https://doi.org/10.1016/j.scitotenv.2014.10.018

    Article  CAS  Google Scholar 

  • Bhadra, B. N., Seo, P. W., & Jhung, S. H. (2016). Adsorption of diclofenac sodium from water using oxidized activated carbon. Chemical Engineering Journal, 301, 27–34. https://doi.org/10.1016/j.cej.2016.04.143

    Article  CAS  Google Scholar 

  • Carranza-Diaz, O., Schultze-Nobre, L., Moeder, M., Nivala, J., Kuschk, P., & Koeser, H. (2014). Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecological Engineering, 71, 234–245. https://doi.org/10.1016/j.ecoleng.2014.07.048

    Article  Google Scholar 

  • Castro-Correia, C., & Fontoura, M. (2015). A influência da exposição ambiental a disruptores endócrinos no crescimento e desenvolvimento de crianças e adolescentes. Rev. Port End Diab Metab, 10(2), 186–192. https://doi.org/10.1016/j.rpedm.2014.10.002

    Article  Google Scholar 

  • Chau, H. T. C., Kadokami, K., Duong, H. T., Kong, L., Nguyen, T. T., Nguyen, T. Q., & Ito, Y. (2018). Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environmental Science and Pollution Research International, 25(8), 7147–7156. https://doi.org/10.1007/s11356-015-5060-z

    Article  CAS  Google Scholar 

  • Cheng, Y.-X., Chen, J., Wu, D., Liu, Y.-S., Yang, Y.-Q., He, L.-X., Ye, P., Zhao, J.-L., Liu, S.-S., Yang, B., & Ying, G.-G. (2021). Highly enhanced biodegradation of pharmaceutical and personal care products in a novel tidal flow constructed wetland with baffle and plants. Water Research, 193, 116870. https://doi.org/10.1016/j.watres.2021.116870

    Article  CAS  Google Scholar 

  • Christofilopoulos, S., Kaliakatsos, A., Triantafyllou, K., Gounaki, I., Venieri, D., & Kalogerakis, N. (2019). Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnology, 52, 94–103. https://doi.org/10.1016/j.nbt.2019.05.006

    Article  CAS  Google Scholar 

  • Chu, K. H., Al-Hamadani, Y. A. J., Park, C. M., Lee, G., Jang, M., Jang, A., & Yoon, Y. (2017). Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review. Chemical Engineering Journal, 327, 629–647. https://doi.org/10.1016/j.cej.2017.06.137

    Article  CAS  Google Scholar 

  • Costa, E. M. F., Spritzer, P. M., Hohl, A., & Bachega, T. A. S. S. (2014). Effects of endocrine disruptors in the development of the female reproductive tract. Arquivos Brasileiros De Endocrinologia e Metabologia, 58(2), 153–161. https://doi.org/10.1590/0004-2730000003031

    Article  Google Scholar 

  • Cui, L., Ouyang, Y., Yang, W., Huang, Z., Xu, Q., & Yu, G. (2015). Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands. Journal of Environmental Management, 153, 33–39. https://doi.org/10.1016/j.jenvman.2015.01.035

    Article  CAS  Google Scholar 

  • Cunha, D. L., Paula, L. M., Silva, S. M. C., Bila, D. M., Fonseca, E. M., da Oliveira, J. L., & M. (2017). Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Ambiente e Água, 12(2), 249–262. https://doi.org/10.4136/ambi-agua.1992

    Article  CAS  Google Scholar 

  • Dai, Y., A, D., Yang, Y., Tam, N., N, F., Tai, Y. P., & Tang, X. (2016). Factors affecting behavior of phenolic endocrine disruptors, estrone and estradiol, in constructed wetlands for domestic sewage treatment. Environmental Science and Technology, 50, 11844–11852. https://doi.org/10.1021/acs.est.6b02026

    Article  CAS  Google Scholar 

  • Dai, Y., Tao, R., Tai, Y., Tam, N. F., A, D., & Yang, Y. (2017). Application of a full-scale newly developed stacked constructed wetland and an assembled bio-filter for reducing phenolic endocrine disrupting chemicals from secondary effluent. Ecological Engineering, 99, 496–503. https://doi.org/10.1016/j.ecoleng.2016.11.007

    Article  Google Scholar 

  • Fonder, N., & Headley, T. (2013). The taxonomy of treatment wetlands: A proposed classification and nomenclature system. Ecological Engineering, 51, 203–211. https://doi.org/10.1016/j.ecoleng.2012.12.011

    Article  Google Scholar 

  • Galletti, A., Verlicchi, P., & Ranieri, E. (2010). Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium. Science of the Total Environment, 408, 5097–5105. https://doi.org/10.1016/j.scitotenv.2010.07.045

    Article  CAS  Google Scholar 

  • Garcia, S. N., Clubbs, R. L., Stanley, J. K., Scheffe, B., Yelderman, J. C., & Brooks, B. W. (2013). Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems. Chemosphere, 92(1), 38–44. https://doi.org/10.1016/j.chemosphere.2013.03.007

    Article  CAS  Google Scholar 

  • Haarstad, K., Bavor, H. J., & Mæhlum, T. (2012). Organic and metallic pollutants in water treatment and natural wetlands: A review. Water Science and Technology, 65, 76–99. https://doi.org/10.2166/wst.2011.831

    Article  CAS  Google Scholar 

  • Haberl, R., Grego, S., Langergraber, G., Kadlec, R. H., Cicalini, A.-R., Dias, S. M., Novais, J. M., Aubert, S., Gerth, A., Thomas, H., & Hebner, A. (2003). Constructed wetlands for the treatment of organic pollutants. Journal of Soils & Sediments, 3, 109–124. https://doi.org/10.1007/BF02991077

    Article  CAS  Google Scholar 

  • Herrera-Melián, J. A., Guedes-Alonso, R., Borreguero-Fabelo, A., Santana-Rodríguez, J. J. S., & Sosa-Ferrera, Z. (2018). Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions. Environmental Science and Pollution Research International, 25(21), 20374–20384. https://doi.org/10.1007/s11356-017-9307-8

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Reyes-Contreras, C., Domínguez, C., Bécares, E., & Bayona, J. M. (2016). Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, 508–517. https://doi.org/10.1016/j.chemosphere.2015.11.090

    Article  CAS  Google Scholar 

  • Kabir, E. R., Rahman, M. S., & Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology, 40(1), 241–258. https://doi.org/10.1016/j.etap.2015.06.009

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. (2009). Treatment wetlands (2nd ed.). CRC Press.

    Google Scholar 

  • Lehl, H. K., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Saad, F. N. M., Oon, Y.-L., Oon, Y.-S., Yong, C.-Y., & Wei-Eng Thung, W.-E. (2016). Multiple aerobic and anaerobic baffled constructed wetlands for simultaneous nitrogen and organic compounds removal. Desalination and Water Treatment, 57, 29160–32916. https://doi.org/10.1080/19443994.2016.1189698

    Article  CAS  Google Scholar 

  • Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment, 468(469), 908–932. https://doi.org/10.1016/j.scitotenv.2013.09.018

    Article  CAS  Google Scholar 

  • Lima, D. R. S., Tonucci, M. C., Libânio, M., & Aquino, S. F. (2017). Fármacos e desreguladores endócrinos em águas brasileiras: Ocorrência e técnicas de remoção. Engenharia Sanitaria e Ambiental, 22(6), 1043–1054. https://doi.org/10.1590/s1413-41522017165207

    Article  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  Google Scholar 

  • Macci, C., Peruzzi, E., Doni, S., Iannelli, R., & Masciandaro, G. (2015). Ornamental plants for micropollutant removal in wetland systems. Environmental Science and Pollution Research International, 22(4), 2406–2415. https://doi.org/10.1007/s11356-014-2949-x

    Article  CAS  Google Scholar 

  • de Machado, C. R. A., Saggioro, E. M., Silva, Y. G. L., dos Pereira, L. P. S., & Campos, J. C. (2015). Avaliação da adsorção de Fenol e Bisfenol A em carvões ativados comerciais de diferentes matrizes carbonáceas. Ambiente e Agua, 10(4), 915–927. https://doi.org/10.4136/ambi-agua.1698

    Article  Google Scholar 

  • Madikizela, L. M., & Chimuka, L. (2017). Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water S.A, 43(2), 264–274. https://doi.org/10.4314/wsa.v43i2.10

    Article  CAS  Google Scholar 

  • Matamoros, V., Gutiérrez, R., Ferrer, I., García, J., & Bayona, J. M. (2015). Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. Journal of Hazardous Materials, 288, 34–42. https://doi.org/10.1016/j.jhazmat.2015.02.002

    Article  CAS  Google Scholar 

  • Matos, A. T., Matos, M. P. (2017). Disposição de águas residuárias no solo e em sistemas alagados construídos. Viçosa Ed. UFV, 371

  • Meeker, J. D., Ehrlich, S., Toth, T. L., Wright, D. L., Calafat, A. M., Trisini, A. T., & Hauser, R. (2010). Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reproductive Toxicology, 30(4), 532–539. https://doi.org/10.1016/j.reprotox.2010.07.005

    Article  CAS  Google Scholar 

  • Moreira, N. F. F., Orge, C. A., Ribeiro, A. R., Faria, J. L., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Research, 87, 87–96. https://doi.org/10.1016/j.watres.2015.08.059

    Article  CAS  Google Scholar 

  • Murray, T. J., Maffini, M. V., Ucci, A. A., Sonnenschein, C., & Soto, A. M. (2007). Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reproductive Toxicology, 23(3), 383–390. https://doi.org/10.1016/j.reprotox.2006.10.002

    Article  CAS  Google Scholar 

  • Nam, S., Jung, C., Li, H., Yu, M., Flora, J. R. V., Boateng, L. K., & Yoon, Y. (2015). Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere, 136, 20–26. https://doi.org/10.1016/j.chemosphere.2015.03.061

    Article  CAS  Google Scholar 

  • Omar, T. F. T., Ahmad, A., Aris, A. Z., & Yosoff, F. M. (2016). Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. Trends in Analytical Chemistry, 85, 241–259. https://doi.org/10.1016/j.trac.2016.08.004

    Article  CAS  Google Scholar 

  • Papaevangelou, V. A., Gikas, G. D., Tsihrintzis, V. A., Antonopoulou, M., & Konstantinou, I. K. (2016). Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chemical Engineering Journal, 294, 146–156. https://doi.org/10.1016/j.cej.2016.02.103

    Article  CAS  Google Scholar 

  • Pessoa, G. P., De, S. N. C., Vidal, C. B., Alves, J. A. C., Firmino, P. I. M., Nascimento, R. F., & Santos, A. B. (2014). Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of the Total Environment, 490, 288–295. https://doi.org/10.1016/j.scitotenv.2014.05.008

    Article  CAS  Google Scholar 

  • Queiroz, F. B. (2011). Desenvolvimento e validação de metodologia para determinação de fármacos e perturbadores endócrinos em amostras de esgoto utilizando extração em fase sólida e cromatografia líquida acoplada à espectrometria de massas. 114 p. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal de Ouro Preto, Ouro Preto

  • Queiroz, F. B., Silva, J. C., Aquino, S. F., Coutrim, M. X., & Afonso, R. J. C. F. (2014). Determination of endocrine disrupters and pharmaceuticals in sewage samples by tandem solid phase clean up/extraction and high performance liquid chromatography-negative and positive electrospray high-resolution mass spectrometry. Journal of the Brazilian Chemical Society, 25, 298–312. https://doi.org/10.5935/0103-5053.20130297

    Article  CAS  Google Scholar 

  • Rivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & Alda, M. L. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment, 613(614), 1263–1274. https://doi.org/10.1016/j.scitotenv.2017.09.134

    Article  CAS  Google Scholar 

  • Rühmland, S., Wick, A., Ternes, T. A., & Barjenbruch, M. (2015). Fate of pharmaceuticals in a subsurface flow constructed wetland and two ponds. Ecological Engineering, 80, 125–139. https://doi.org/10.1016/j.ecoleng.2015.01.036

    Article  Google Scholar 

  • Ryu, J., Oh, J., Snyder, S. A., & Yoon, Y. (2014). Determination of micropollutants in combined sewer overflows and their removal in a wastewater treatment plant (Seoul, South Korea). Environmental Monitoring and Assessment, 186(5), 3239–3251. https://doi.org/10.1007/s10661-013-3613-5

    Article  CAS  Google Scholar 

  • Sanson, A. L., & Estudo da extração e desenvolvimento de metodologia para determinação simultânea de microcontaminantes orgânicos em água superficial por GC-MS e métodos quimiométricos. (2012). 151 p. Universidade Federal de Ouro Preto, Minas Gerais.

    Google Scholar 

  • Saputra, F., Yen, C. H., Hsieh, C. Y., Ou, T. Y., Risjani, Y., Cheah, W. K., & Hu, S. Y. (2016). Toxicity effects of the environmental hormone 4-tert-octylphenol in Zebrafish (Danio rerio). Journal of Marine Science Research Development, 6, 1–7. https://doi.org/10.4172/2155-9910.1000180

    Article  CAS  Google Scholar 

  • Serna-Galvis, E. A., Silva-Agredo, J., Giraldo-Aguirre, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 31, 276–283. https://doi.org/10.1016/j.ultsonch.2016.01.007

    Article  CAS  Google Scholar 

  • Silva, J. C. C., Reis Teodoro, J. A., De Cássia Franco Afonso, R. J., Aquino, S. F., & Augusti, R. (2014). Photodegradation of bisphenol A in aqueous medium: Monitoring and identification of by-products by liquid chromatography coupled to high-resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 28(9), 987–994. https://doi.org/10.1002/rcm.6863

    Article  CAS  Google Scholar 

  • Takeuchi, T., Tsutsumi, O., Ikezuki, Y., Takai, Y., & Taketani, Y. (2004). Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocrine Journal, 51(2), 165–169. https://doi.org/10.1507/endocrj.51.165

    Article  CAS  Google Scholar 

  • Tejeda, A., Torres-Bojorges, Á. X., & Zurita, F. (2017). Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecological Engineering, 98, 410–417. https://doi.org/10.1016/j.ecoleng.2016.04.012

    Article  Google Scholar 

  • Toro-vélez, A. F., Madera-parra, C. A., Peña-varón, M. R., Lee, W. Y., Bezares-Cruz, J. C., Walker, W. S., & Lens, P. N. L. (2016). BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Science of the Total Environment, 542, 93–101. https://doi.org/10.1016/j.scitotenv.2015.09.154

    Article  CAS  Google Scholar 

  • Venditti, S., Brunhoferova, H., & Hansen, J. (2022). Behaviour of 27 selected emerging contaminants in vertical flow constructed wetlands as post-treatment for municipal wastewater. Science of the Total Environment, 819, 153234. https://doi.org/10.1016/j.scitotenv.2022.153234

    Article  CAS  Google Scholar 

  • Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Science of the Total Environment, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  Google Scholar 

  • Verlicchi, P., & Zambello, E. (2014). How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A Review of Science Total Environment, 470–471, 1281–1306. https://doi.org/10.1016/j.scitotenv.2013.10.085

    Article  CAS  Google Scholar 

  • Vymazal, J., Březinová, T., & Koželuh, M. (2015). Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 536, 625–631. https://doi.org/10.1016/j.scitotenv.2015.07.077

    Article  CAS  Google Scholar 

  • Yao, L., Wang, Y., Tong, L., Deng, Y., Li, Y., Gan, Y., & Zhao, K. (2017). Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China. Ecotoxicology and Environment Safety Amsterdam, 135, 236–242. https://doi.org/10.1016/j.ecoenv.2016.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research study was performed with the support from Higher Education Improvement Coordination and Minas Gerais State Research Support Foundation (FAPEMIG).

Funding

The research was developed with the contribution of financial resources from the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Minas Gerais State Research Support Foundation (FAPEMIG). This research was financially supported by the Research Supporting Foundation of Minas Gerais State (TEC-APQ-02220–15).

Author information

Authors and Affiliations

Authors

Contributions

Ana Flávia Santos Rabelo de Melo: conceptualization, methodology, investigation, writing—original draft.

Jacineumo Falcão de Oliveira: formal analysis, software.

Fátima Resende Luiz Fia: conceptualization, supervision, project administration.

Ronaldo Fia: writing—review and editing, project administration.

Mateus Pimentel de Matos: software, investigation.

Ananda Lima Sanson: methodology, validation.

Corresponding author

Correspondence to Jacineumo Falcão de Oliveira.

Ethics declarations

Ethics Approval

Not applicable in this work.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, A.F.S.R., Oliveira, J.F., Fia, F.R.L. et al. Microcontaminants Removal in Constructed Wetlands with Different Baffle Arrangements and Cultivated with Pennisetum setaceum. Water Air Soil Pollut 233, 322 (2022). https://doi.org/10.1007/s11270-022-05822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05822-3

Keywords

Navigation