Skip to main content
Log in

Estimating the Average Steelworks Particulate Matter Increments Associated with Wind Sectors at a Steel Complex in the UK

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present work calculates the steelworks increments of particulate matter (PM) mass and chemical composition of Partisol, Filter Dynamic Measurement System (FDMS), and Streaker data using wind sector analysis. Particulate matter sampling took place at the perimeter of a steelworks complex in Port Talbot, Wales, UK, between April 17 and May 16, 2012. Two sampling sites were selected representing the upwind and downwind sectors. Daily Partisol, hourly FDMS, and Streaker PM samples were analysed for mass and chemical composition using standard procedures. Wind-determined analysis was carried out on the daily and hourly PM results by finding the differences between the downwind and upwind PM data that were associated with the steelworks production units. Little Warren (LW) monitoring site located at the coastal site of Port Talbot represents the upwind site when the prevailing wind blows from westerly and south-westerly across the steelworks complex to the fire station (FS), the upwind site. When the prevailing wind blows from the southeast and south, LW represents the downwind sector. Results indicated common episodic days where both the FDMS and Partisol PM10 data exceeded the World Health Organization (WHO) limit of 50 µg m−3 (24-h mean). The Partisol PM2.5/PM10 ratios revealed elevated coarse particle concentrations, whilst the FDMS PM2.5/PM10 ratios showed domination by PM2.5 particles. Wind-determined profiles of PM during the 1-month campaign provided useful information about the tracer elements specific to a particular processing unit of the steelworks industry. The annual PM steelworks increments at Port Talbot by Partisol and FDMS are approximately 2.0 µg m−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Code Availability

Not applicable.

References

  • Alastuey, A., Moreno, N., Querol, X., Viana, M., Artiñano, B., Luaces, J. A., & Guerra, B. J. A. (2007). Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmospheri Environment, 41(30), 6366–6378.

    Article  CAS  Google Scholar 

  • Amato, F., Cassee, F. R., van der Gon, H. A. D., Gehrig, R., Gustafsson, M., Hafner, W., Harrison, R. M., Jozwicka, M., Kelly, F. J., Moreno, T., Prevot, A. S. H., Schaap, M., & Querol, S. J. X. (2014). Urban air quality: The challenge of traffic non-exhaust emissions. Journal of Hazardous Materials, 275, 31–36.

    Article  CAS  Google Scholar 

  • Anenberg, S. C., Horowitz, L. W., Tong, D. Q., & West, J. J. (2010). An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environmental Health Perspective, 118(9), 1189–1195.

    Article  CAS  Google Scholar 

  • Athanasopoulou, E., Tombrou, M., Pandis, S. N., & Russell, A. G. (2008). The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas. Atmospheric Chemistry & Physics, 8, 5755–5769.

    Article  CAS  Google Scholar 

  • Beddows, D. C. S., & Harrison, R. M. (2018). Identification of specific sources of airborne particles emitted from within a complex industrial (steelworks) site. Atmospheric Environment, 183, 122–134.

    Article  CAS  Google Scholar 

  • Charron, A., & Harrison, R. M. (2005). Fine (PM2.5) and coarse (PM2.5–10) particulate matter on a heavily trafficked London highway: Sources and processes. Environmental Science & Technology, 39, 7768–7776.

    Article  CAS  Google Scholar 

  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, R., Dandona, L., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, K., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918.

    Article  Google Scholar 

  • Dall’Osto, M., Booth, M. J., Smith, W., Fisher, R., & Harrison, R. M. (2008). Study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Science Technology, 42, 981–991.

    Article  CAS  Google Scholar 

  • Dall’Osto, M., Drewnick, F., Fisher, R., & Harrison, R. M. (2012). Real-time measurements of nonmetallic fine particulate matter adjacent to a major integrated steelworks. Aerosol Science and Technology, 46(6), 639–653.

    Article  Google Scholar 

  • Duarte, R. M. (2020). Duarte AC 2020 Urban atmospheric aerosols: Sources, analysis, and effects. Atmosphere, 11, 1221. https://doi.org/10.3390/atmos11111221

    Article  Google Scholar 

  • Grahame, T. J. (2007). Mortality from copper smelter emissions circa 1967. Environmental Health Perspectives, 115(9), A439.

    Article  Google Scholar 

  • Harrison, R. M., Jones, A. M., & Lawrence, R. G. (2003). A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmospheric Environment, 37(35), 4927–4933.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Allan, J., Carruthers, D., Heal, M. R., Lewis, A. C., Marner, B., Murrells, T., & Williams, A. (2021). Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmospheric Environment, 262, 118592.

    Article  CAS  Google Scholar 

  • Hien, P. D., Binh, N. T., Truong, Y., Ngo, N. T., & Sieu, L. N. (2001). Comparative receptor modelling study of TSP, PM2 and PM2-10 in Ho Chi Minh City. Atmospheric Environment, 35, 669–2678.

    Article  Google Scholar 

  • Hleis, D., Fernandez-Olmo, I., Ledoux, F., Kfoury, K., Courcot, L., Desmonts, T., & Courcot, D. (2013). Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. Journal of Hazardous Materials, 250(251), 246–255.

    Article  Google Scholar 

  • Hodges J 2015 Environmental impacts of PM10 releases to atmosphere from operations at Port Talbot Works. Reference Source number: 159398

  • Machemer, S. D. (2004). Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environmental Science & Technology, 38(2), 381–389.

    Article  CAS  Google Scholar 

  • Moreno, T., Merolla, L., Gibbons, W., Greenwell, L., Jones, T., & Richards, R. (2004). Variations in the source, metal content and bioreactivity of technogenic aerosols: A case study from Port Talbot, Wales, UK. Science of the Total Environment, 334, 59–73.

    Article  Google Scholar 

  • Mysliwiec, M. J., & Kleeman, M. J. (2002). Source apportionment of secondary airborne particulate matter in a polluted atmosphere. Environmental Science & Technology, 36, 5376–5384.

    Article  CAS  Google Scholar 

  • Pryor, S. C., Barthelmie, R. J., Schoof, J. T., Binkowski, F. S., Delle Monache, L., & Stull, R. (2007). Modeling the impact of sea-spray on particle concentrations in a coastal city. Science of the Total Environment, 391, 132–142.

    Article  Google Scholar 

  • Taiwo, A. M., Beddows, D. C. S., Shi, Z., & Harrison, R. M. (2014a). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of the Total Environment, 475, 29–38.

    Article  CAS  Google Scholar 

  • Taiwo, A. M., Beddows, D. C. S., Calzolai, C., Harrison, R. M., Lucarelli, F., Nava, S., Shi, Z., Valli, G., & Vecchi, R. (2014b). Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Science of the Total Environment, 490, 488–500.

    Article  CAS  Google Scholar 

  • Taiwo, A. M., Harrison, R. M., Beddows, D. C. S., & Shi, Z. (2014c). Source apportionment of single particles sampled at the industrially polluted town of Port Talbot, United Kingdom by ATOFMS. Atmospheric Environment, 97, 155–165.

    Article  CAS  Google Scholar 

  • Taiwo, A. M. (2016). Source apportionment of urban background particulate matter in Birmingham, United Kingdom using a mass closure model. Aerosol Air Quality Research, 16(5), 1244–1252.

    Article  CAS  Google Scholar 

  • Taiwo, A. M. (2017). Characteristics of particulate matter collected at an urban background site and a roadside site in Birmingham. United Kingdom Atmósfera, 30(4), 323–335.

    CAS  Google Scholar 

  • Watkiss, P., Pye, S., & Holland, M. (2005). Baseline scenarios for service contract for carrying out cost-benefit analysis of air quality related issues, in particular in the Clean Air for Europe (CAFE) programme. AEAT/ED51014/ Baseline Issue 5.

  • WHO (2009). Global health risks: Mortality and burden of disease attributable to selected major risks. World Health Organization. http://whqlibdoc.who.int/publications/2009/9789241563871_eng.pdf. Accessed 17 Jul 2020.

  • Zhou, Z., Dionisio, K. L., Verissimo, T. G., Kerr, A. S., Coull, B., Arku, R. E., Koutrakis, P., Spengler, J. D., Hughes, A. F., Vallarino, J., & Ezzati, M. (2013). Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra. Ghana Environmental Research Letters, 8(4), 044025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledged the financial support from the Tertiary Education Trust Fund (TETFund, Nigeria) during the author’s Ph.D. studies at the University of Birmingham, UK. The supervisory contributions from R.M. Harrison, D.C.S Beddows, and Z. Shi are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale M. Taiwo.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1706 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taiwo, A.M. Estimating the Average Steelworks Particulate Matter Increments Associated with Wind Sectors at a Steel Complex in the UK. Water Air Soil Pollut 233, 325 (2022). https://doi.org/10.1007/s11270-022-05814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05814-3

Keywords

Navigation