Skip to main content

Advertisement

Log in

Hydrogeochemical Evaluation, Groundwater Quality Appraisal, and Potential Health Risk Assessment in a Coal Mining Region of Eastern India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The major focus of the research work is on the evaluation of the hydrogeochemical characteristics, water quality index (WQI), and health risk assessment in a coal mining region of eastern India. Fifty-six water samples were collected from tube wells, dug wells, streams, and rivers for the present study. The major hydrogeochemical facies are Ca-Mg-HCO3 and Ca-Mg-Cl-SO4, which indicates the dissolution of carbonate phase minerals. Relatively higher levels of Ca2+ and Mg2+ and lower SO42− concentration with alkaline pH conditions could have controlled the dissolution of ions in the coal-bearing aquifer. Rock-water interaction, ion exchange processes, and carbonate phase dissolutions are the major hydrogeochemical processes governing the ionic concentrations in the groundwater. Geochemical modeling shows groundwater samples are in near saturation to equilibrium condition with the carbonate phase minerals such as calcite and dolomite, while undersaturated with sulfate phase minerals such as anhydrite and gypsum. The results of the multivariate analyses reveal the contribution from natural and anthropogenic sources that determines the groundwater composition in the coal mining area. Based on (WQI) model, about 82% of the water samples were excellent to good category. The cumulative health risk assessment based on ingestion of (F and NO3 concentrations) in groundwater indicates a non-carcinogenic risk of 90% for children and 92% for adults. Therefore, health risk reduction measures and necessary action plans should be adopted to improve the drinking water quality standard and for the protection of water resources in the coal mining regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The manuscript has data included as electronic supplementary material.

References

  • Adimalla, N., Li, P., & Qian, H. (2019). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment. Human and Ecological Risk Assessment: An International Journal, 25(5), 1107–1124.

    Article  CAS  Google Scholar 

  • Adimalla, N., & Qian, H. (2021). Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from semi-urban region of South India. Ecotoxicology and Environmental Safety, 207, 111277.

    Article  CAS  Google Scholar 

  • Ahada, C. P., & Suthar, S. (2018). Assessing groundwater hydrochemistry of Malwa Punjab India. Arabian Journal of Geosciences, 11(2), 17.

    Article  CAS  Google Scholar 

  • Aminiyan, M. M., Aitkenhead-Petersonv, J., & Aminiyan, F. M. (2018). Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river Iran. Environmental Geochemistry and Health, 40(6), 2707–2728.

    Article  CAS  Google Scholar 

  • APHA. (2017). American Public Health Association. Standard Methods for the Examination of Water and Waste Water, 23rdedn., American Public Health Association, American Water Works Association, Water Environ. Fed., co-publishers, Washington, D.C.

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, Groundwater and Pollution (2nd ed.). AA Balkema Publishers.

    Google Scholar 

  • Ardejani, F. D., Shokri, B. J., Babheri, M., & Soleimani, E. (2010). Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr-Ramian region, northeast Iran. Environmental Earth Sciences, 61, 1547–1560.

    Article  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle: geochemistry and environment (p. 480). Prentice-Hall.

    Google Scholar 

  • Bhattacharya, P., Sracek, O., Eldvall, B., Asklund, R., Barmen, G., Jacks, G., Koku, J., Gustafsson, J., Singh, G., & Balfors, B. B. (2012). Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. Journal of African Earth Sciences, 66, 72–84.

    Article  CAS  Google Scholar 

  • BIS. (2012). Indian Standard for Drinking- water specifications. Bureau of Indian Standards IS: 10500, Indian Standard Institute, India.

  • Bozau, E., Licha, T., & Liebmann, W. (2017). Hydrogeochemical characteristics of mine water in the Harz Mountains Germany. Chemie Der Erde- Geochemistry, 77(4), 614–624.

    Article  CAS  Google Scholar 

  • Brindha, K., Paul, R., Walter, J., Tan, M. L., & Singh, M. K. (2020). Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environmental Geochemistry and Health, 42, 3819–3839.

    Article  CAS  Google Scholar 

  • Brkic, Z., Briski, M., & Markovic, T. (2016). Use of hydrochemistry and isotopes for improving the knowledge of groundwater flow in a semi-confined aquifer system of the Eastern Slavonia (Croatia). Catena, 142, 153–165.

    Article  CAS  Google Scholar 

  • Chae, G. T., Yun, S. T., Bernhard, M., Kim, K. H., Kim, S. Y., & Kwon, J. S. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1), 272–283.

    Article  CAS  Google Scholar 

  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semi-arid region of northwest China. Exposure and Health, 9(3), 183–195.

    Article  CAS  Google Scholar 

  • Chen, S., & Gui, H. (2017). Hydrogeochenical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern province, china. Applied Water Science, 7, 1903–1910.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhao, H. X., Xie, Z. H., Huang, H. Y., Zang, S. Y., & Lian, B. (2015). Heavy metal pollution characteristics in the Kali coal mining region, Guizhou province, China. Journal of Residual Sciences and Technology, 12, S123-131.

    Article  CAS  Google Scholar 

  • Chudy, K., Marszalek, H., & Kierczak, J. (2014). Impact of hard-coal waste dump on water quality - a case study of Ludwikowice Kiodzkie (Nowa Ruda Coalfield, SW Poland). Journal of Geochemical Exploration, 146, 127–135.

    Article  CAS  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3), 294–313.

    Article  CAS  Google Scholar 

  • Cortes, J. E., Munoz, L. F., Gonzalez, C. A., Nino, J. E., Polo, A., Suspes, A., Siachoque, S. C., Hernandez, A., & Trujilo, H. (2016). Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia: A multivariate statistical approach. Journal of Hydrology, 539, 113–124.

    Article  CAS  Google Scholar 

  • Cravotta, C. A., III. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania. USA. Part 1: Constituent quantities and corrélations. Applied Geochemistry, 23, 166–202.

    Article  CAS  Google Scholar 

  • Cravotta, C. A., III. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations. Applied Geochemistry, 23, 203–226.

    Article  CAS  Google Scholar 

  • Cravotta, C. A., III., & Brady, K. B. C. (2015). Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Applied Geochemistry, 62, 108–130.

    Article  CAS  Google Scholar 

  • Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., & Panigrahi, M. K. (2010). Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. Journal of Geochemical Exploration, 105, 75–82.

    Article  CAS  Google Scholar 

  • Feng, Q., Li, T., Qian, B., Zhou, L., Gao, B., & Yuan, T. (2014). Chemical characteristics and utilization of coal mine drainage in China. Mine Water Environment, 33, 276–286.

    Article  CAS  Google Scholar 

  • Fijani, F., Moghaddam, A. A., Tsai, F. T. C., & Tayfur, G. (2016). Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain Aquifer. Water Resource Management North west of Iran., 31(3), 765–780.

    Article  Google Scholar 

  • Fisher, R. S., & Mullican, W. F. (1997). Hydrochemical evaluation of sodium sulphate and sodium chloride in groundwater beneath the Northern Chihuahuan Desert, Trans.-Pecos, Texas, USA. Hydrogeology Journal, 10(4):455-547.

  • Galhardi, J. A., & Bonotto, D. M. (2016). Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: A case study in southern Brazil. Environmental Science and Pollution Research, 23, 18911–18927.

    Article  CAS  Google Scholar 

  • Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E.D.-G.J., Tettey, S., Diabene, P. Y., & Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere, 233, 862–872.

    Article  CAS  Google Scholar 

  • Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in concentrated urban area. Journal of Cleaner Production, 121006.

  • Garrels, R. M., & Mackenzie, F. T. (1971). Gregor’s denudation of the continents. Nature, 231, 382–383.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • GSI. (2019). Indian Coal and Lignite Resources-2019. Geological Survey of India, Natural Energy Resources Mission –II B, Government of India, pp 47.

  • He, S., & Wu, J. (2019). Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi Country Northwest China. Exposure and Health, 11(2), 125–137.

    Article  CAS  Google Scholar 

  • Hem, J.D. (1989). Study and interpretation of the chemical characteristics of natural water 3rd edition. US Geological Survery Water-Supply 2254, pp 263.

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of the Water Pollution Control Federation, 3, 300.

    Google Scholar 

  • Hounslow, A. W. (1995). Water quality data: Analysis and interpretation (pp. 47–126). CRC Press.

    Google Scholar 

  • Jia, H., Howard, K., & Qian, H. (2020). Use of multiple isotopic and chemical tracers toidentify sources of nitrate in shallow groundwaters along the northern slope of the Qinling Mountains China. Applied Geochemistry, 113, 104512.

    Article  CAS  Google Scholar 

  • Jia, J., Li, X., Wu, P., Liu, Y., Han, C., Zhou, L., & Yang, L. (2015). Human health risk assessment and safety threshold of harmful trace elements in the soil environment of the wulantuga open-cast coal mine. Minerals, 5, 837–848.

    Article  CAS  Google Scholar 

  • Karanth, K.R. (1987). Groundwater Assessment, Development and Management. 720 Tata McGraw Hill, New Delhi.

  • Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., Bellows, B. C., & Li, P. (2021). Groundwater quality evolution based on geochemical modelling and aptness testing for ingestion using entropy water quality and total hazard indexes in urban-industrial area (Tiruppur) of South India. Environmental Science and Pollution Research, 28, 18523–18538.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., Balakumar, K. G., & Chandran, N. S. (2020). Health threats for the inhabitants of a textile hub (Tiruppur region) in southern India due to multipath entry of fluoride ions from groundwater. Ecotoxicology and Environmental Safety, 204, 111071.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., Wu, J., & Srinivasamoorthy, K. (2019). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi river basin, South India. Human and Ecological Risk Assessment: An International Journal, 25, 250–270.

    Article  CAS  Google Scholar 

  • Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493.

    Article  CAS  Google Scholar 

  • Keskin, T. E. (2013). Mineral-water interaction and hydrogeochemistry of groundwater around Bartin coal mine, Turkey. Fresenius Environmental Bulletin, 22, 2750–2762.

    CAS  Google Scholar 

  • Kim, K. (2002). Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrological Processes, 16, 1793–1806.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry (p. 600). Prentice Hall.

    Google Scholar 

  • Li, P., He, X., & Guo, W. (2019). Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an city on the Loess plateau of northwest China. Human and Ecological Risk Assessment: An International Journal, 25, 11–31.

    Article  CAS  Google Scholar 

  • Li, P. Y., Feng, W., Xue, C. Y., Tian, R., & Wang, S. (2017). Spatiotemporal variability of contaminants in lake water and their risks to human health: A case study of the Shahu Lake tourist area, northwest China. Exposure and Health, 9(3), 213–225.

    Article  CAS  Google Scholar 

  • Lin, M., Peng, W., & Gui, H. (2016). Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province China. Environmental Monitoring and Assessment, 188, 202.

    Article  CAS  Google Scholar 

  • Liu, F., Song, S., Yang, L., Han, D., Zhang, Y., Ma, Y., & Bu, H. (2015). The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Science of the Total Environment, 538, 327–340.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, H., Jin, D., Xu, F., & Zhao, C. (2020). Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan formation in the Pingdingshan coalfield. Environmental Earth Sciences, 79, 151.

    Article  CAS  Google Scholar 

  • Liu, P., Hoth, N., Drebenstedt, C., Sun, Y., & Xu, Z. (2017). Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - using multivariate statistics and geochemical modelling approaches. Science of the Total Environment, 601–602, 1–14.

    Article  CAS  Google Scholar 

  • Liu, R. X., Kuang, J., Gong, Q., & Hou, X. L. (2003). Principal component regression analysis with spss. Computer Methods and Programs in Biomedicine, 71(2), 141–147.

    Article  CAS  Google Scholar 

  • Mahato, M. K., Singh, G., Singh, P. K., Singh, A. K., & Tiwari, A. K. (2017). Assessment of mine water quality using heavy metal pollution index in a coal mining area of Damodar River Basin. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-017-2097-3

    Book  Google Scholar 

  • Marghade, D., Malpe, D. B., & Zade, A. B. (2012). Major ion chemistry of shallow groundwater of a fast-growing city of Central India. Environmental Monitoring and Assessment, 184, 2405–2418.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1979). Concentrations des cauxfluivales and elements Majeurs etapparts Ch solution aux Oceans. Rw. Geol. Dy. Geography., 21, 215–246.

    CAS  Google Scholar 

  • Mohanty, A. K., Lingaswamy, M., Rao Gurunadha, V. V. S., & Sankaran, S. (2018). Impact of acid mine drainage and hydrogeochemical studies in a part of Rajrappa coal mining area of Ramgarh District, Jharkhand State of India. Groundwater for Sustainable Development, 7, 164–175.

    Article  Google Scholar 

  • Neogi, B., Singh, A. K., Pathak, D. D., & Chaturvedi, A. (2017). Hydrogeochemistry of coal mine water of North Karanpura coalfields, India: Implications for solute acquisition processes, dissolved fluxes and water quality assessment. Environmental Earth Sciences, 76, 489.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2009). Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Ball, J. W., Donahoe, R., & Whittemore, D. (1989). Groundwater chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Panno, S. V., Hackley, K. C., Liu, C. L., & Cartwright, K. (1994). Hydrochemistry of the Mahomet Bedrock Valley Aquifer, east-central Illinois: Indicators of recharge and ground-water flow. Ground Water, 32(4), 591–604.

    Article  CAS  Google Scholar 

  • Parkhurst, D.L., & Appelo, C.A.J. (1999), User’s guide to PHREEQC (version 2) A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. USGS water-resources investigation report, pp 99-4259.

  • Parui, P.K., (2001). Geological Survey of India, Geoenvironmental appraisal of the Northern Part (Gopalpur Area) of Ib valley Coalfield, Orissa. In: Unpublished progress report for field season 1999-2000, Geological Survey of India. Code no. 1999-2000/ENV/CW/CW/1999/001, PP 23.

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water analysis. Transactions American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Prathap, A., & Chakraborty, S. (2019). Hydrochemical characterization and suitability analysis of groundwater for domestic and irrigation uses in opencast coal mining areas of Chari and Kuju, Jharkhand India. Groundwater for Sustainable Development, 9, 100244.

    Article  Google Scholar 

  • Price, P., & Wright, I. A. (2016). Water quality impact from the discharge of coal mine wastes to receiving streams: Comparison of impacts from an active mine with a closed mine. Water Air Soil Pollution, 227, 155.

    Article  CAS  Google Scholar 

  • Qasemi, M., Afsharnia, M., Farhang, M., Bakhshizadeh, A., Allahdadi, M., & Zarei, A. (2018). Health risk assessment of nitrate exposure in groundwater of rural areas of Gonabad and Bajestan Iran. Environmental Earth Sciences, 77, 551.

    Article  CAS  Google Scholar 

  • Qiao, W., Li, W., Zhang, S., & Niu, Y. (2019). Effects of coal mining on the evolution of groundwater hydrogeochemistry. Hydrogeology Journal, 27, 2245–2262.

    Article  CAS  Google Scholar 

  • Qureshi, A., Maurice, C., & Öhlander, B. (2016). Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 160, 44–54.

    Article  CAS  Google Scholar 

  • Qu, S., Shi, Z., Liang, S., Wang, G., & Han, J. (2021). Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield - using self-organizing maps (SOM). Journal of Geochemical Exploration, 227, 106795.

    Article  CAS  Google Scholar 

  • Raja Rao, C.S. (1982). Coal resources of Tamilnadu, Andra Pradesh, Orissa and Maharashtra. Bulletin of Geological Survey of India, A45, pp103.

  • Rehman, J. U., Ahmad, N., Ullah, N., Alam, I., & Ullah, H. (2020). Health risks in different age group of nitrate in spring water used for drinking in Harnai, Balochistan, Pakistan. Ecology of Food and Nutrition, 59, 462–471.

    Article  Google Scholar 

  • Rinder, T., Dietzel, M., Stammeier, J. A., Leis, A., Bedoya-Gonzalez, D., & Hilberg, S. (2020). Geochemistry of coal mine drainage, groundwater and brines from the Ibbenburen mine, Germany: A coupled elemental-isotopic approach. Applied Geochemistry, 121, 104693.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Tripathy, S., Panigrahi, M. K., & Equeenuddin, S. M. (2014). Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India: Implication for acid and metal generation. Journal of Geochemical Exploration, 145, 135–147.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1967). Chemistry of Sanitary Engineers (2nd ed.). McGraw Hill.

    Google Scholar 

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources (pp. 54–83). UNESCO.

    Google Scholar 

  • Sefie, A., Aris, A. Z., Ramli, M. F., Narany, T. S., Shamsuddin, M. K. N., Saadudin, S. B., & Zali, M. A. (2018). Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin. Malaysia Environmental Earth Science, 77(10), 397.

    Article  CAS  Google Scholar 

  • Şerner, Ş, Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584–585, 131–144.

    Article  CAS  Google Scholar 

  • Singh, A. K., Mahato, M. K., Neogi, B., Tewary, B. K., & Sinha, A. (2012). Environmental geochemistry and quality assessment of mine water of Jharia coalfield, India. Environmental Earth Sciences, 65, 49–65.

    Article  CAS  Google Scholar 

  • Singh, R. B. P., Singh, A., & Choudhary, S. K. (2014). Impact of open cast coal mining on the quality of surface water, groundwater and vegetation: A case study in Simlong coalfield, Sahibganj Jharkhand. International Journal of Emerging Technologies, 5(2), 95.

    Google Scholar 

  • Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of Korba coalfield, central India. Environmental Earth Sciences, 76, 566.

    Article  CAS  Google Scholar 

  • Sophocleous, M. (2010). Understanding and explaining surface tension and capillarity: An introduction to fundamental physics for water professionals. Hydrogeology Journal, 18(4), 811–821.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramananthan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa Landfill Delhi, India using graphical and multivariate statistical methods. Environmental Geology, 53, 1509–1528.

    Article  CAS  Google Scholar 

  • Subba Rao, N., Sunitha, B., Sun, L., Spandana, B. P., & Chaudhary, M. (2020). Mechanisms controlling groundwater chemistry and assessment of potential health risk: A case study from South India. Geochemistry, 80, 125568.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & Mahato, & M.K. (2016). Environmental geochemistry and a quality assessment of mine water of the West Bokaro Coalfield, India. Mine Water Environment, 35, 525–535.

    Article  CAS  Google Scholar 

  • Todd, N. (1995). Groundwater contamination in Japan. Environmental Geology and Water Science, 20, 15–20.

    Google Scholar 

  • Tran, T. Q., Banning, A., Wisotzsky, F., & Wohnlich, S. (2020). Mine water hydrogeochemistry of abandoned coal mines in the outcropped Carboniferous formations, Ruhr area Germany. Environmental Earth Sciences, 79, 84.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of elements in some major units of the Earth’s crust. Bulletin of Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (2004). Risk assessment guidance for superfund volume 1: human health evaluation manual (partnE). http://www.epa.gov/oswer/riskassessment/ragse/pdf/introduction.pdf.

  • USEPA. (2014). Human health evaluation manual, supplemental guidance: Update of standard default exposure factors-OSWER directive 9200, 1-120, pp6.

  • Vaiphei, S. P., Kurakalva, R. M., & Sahadevan, D. K. (2020). Water quality index and GIS-based technique for assessment of groundwater quality in Wanaparthy watershed, Telangana, India. Environmental Science and Pollution Research, 27, 45041–45062.

    Article  CAS  Google Scholar 

  • Wang, L., Dong, Y., Xu, Z., & Qiao, X. (2017). Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, norhtern China. Hydrogeology Journal, 25(8), 2363.

    Article  CAS  Google Scholar 

  • Weitzberg, E., & Lundberg, J. O. (2013). Novel aspects of dietary nitrate and human health. Annual Review of Nutrition, 33, 129–159.

    Article  CAS  Google Scholar 

  • WHO. (2008). Guidelines for drinking-water quality (3rd ed., p. 9789241547611). World Health Organization.

    Google Scholar 

  • WHO. (2011). World Health Organisation guidelines for drinking water quality, 4th ed. Incorporating the first and second addenda, vol. 1 recommendation, Geneva.

  • Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Exposure and Health, 8(3), 311–329.

    Article  CAS  Google Scholar 

  • Yadav, K., Raphi, M., & Jagadevan, S. (2021). Geochemical appraisal of fluoride contaminated groundwater in the vicinity of a coal mining region: Spatial variability and health risk assessment. Geochemistry, 81(1), 125684.

    Article  CAS  Google Scholar 

  • Yamanaka, M., Nakano, T., & Tase, N. (2007). Sulfate reduction and sulfide oxidation in anoxic confined aquifers in the northeastern Osaka Basin, Japan. Journal of Hydrology, 335, 55–67.

    Article  Google Scholar 

  • Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine water- hydrology, pollution, remediation. Kluwer Acad. Publ.

    Google Scholar 

  • Yousefi, M., Ghoochani, M., & Hossein, M. A. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicology and Environmental Safety, 148, 426–430.

    Article  CAS  Google Scholar 

  • Zhang, Q., Qian, H., Xu, P., Hou, K., & Yang, F. (2021). Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District China. Ecotoxicology and Environmental Safety, 212, 111992.

    Article  CAS  Google Scholar 

  • Zhang, Q., Xu, P., & Qian, H. (2020). Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposure and Health, 12, 487–500.

    Article  CAS  Google Scholar 

  • Zhou, M., Li, X., Zhang, M., Liu, B., Zhang, Y., Gao, Y., Ullah, H., Peng, L., He, A., & Yu, H. (2020). Water quality in a worldwide coal mining city: A scenario in water chemistry and health risks exploration. Journal of Geochemical Exploration, 213, 1065513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. V. M. Tiwari, Director of CSIR-NGRI for his kind encouragement and permission to publish the manuscript. We are also thankful to Mr. Neeraj Kalla, General Manager (Environment), and Mr. VikasHansa (Environmental Engineer), of Basundhara Coal Mines (MCL), for their kind help during the fieldwork. The authors are thankful to anonymous reviewers for their constructive comments, which have substantially improved the manuscript.

Funding

This research is partially supported by the CSIR-NGRI and Ravenshaw University Self-Research Program. Manuscript No. is NGRI/Lib/2022/Pub-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atulya Kumar Mohanty.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, P., Mohanty, A.K., Khaoash, S. et al. Hydrogeochemical Evaluation, Groundwater Quality Appraisal, and Potential Health Risk Assessment in a Coal Mining Region of Eastern India. Water Air Soil Pollut 233, 324 (2022). https://doi.org/10.1007/s11270-022-05811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05811-6

Keywords

Navigation