Skip to main content

Advertisement

Log in

Uncertainty Analysis in Receptor Model with Sources Identification and Risks Apportionment of Toxic Metal(oid)s in Agricultural Soils Around Industrial Areas in Bangladesh

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal(oid)s contamination in agricultural soils can create adverse environmental conditions and pose human health risks. The present study was conducted to assess metal(oid)s contents, source identification, and ecological and health risks due to metal(oid)s contamination in BISIC industrial region soils of Tangail district Bangladesh. The mean ± SD of chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) were 8.67 ± 8.27 mg/kg, 13.76 ± 18.13 mg/kg, 23.46 ± 23.62 mg/kg, 4.93 ± 2.87 mg/kg, 1.56 ± 1.70 mg/kg, and 16.63 ± 9.32 mg/kg, respectively. The positive matrix factorization model identified lead-acid battery sources (49.53%), industrial sources (33.66%), and agricultural practices (16.63%) as potential sources of studied metal(oid)s. Contamination factor value of Cd (1.65) in the study area soils showed moderate contamination, whereas Nemerow-integrated pollution index (1.95) indicated slightly soil pollution and potential ecological risk (179.67) showed considerable risks. The HI value for adult male, female, and children due to ingestion, inhalation, and dermal contact was higher than 1, assuming severe non-cancer health risks. Total cancer risk value of Cr (1.14E-02) Ni (7.24E-04), As (2.33E-03), and Cd (3.09E-04) for adult male; Cr (1.23E-02), Ni (7.81E-04), As (2.51E-03), and Cd (3.32E-04) for adult female, whereas Cr (5.32E-02), Ni (3.38E-03), As (1.09E-02), Cd (1.44E-03), and Pb (1.00E-04) for children were exceeded the highest acceptable limit (1.0E-04) indicating possible cancer risks. The present study will help environmental engineers and policymakers to control metal pollution in agricultural soils based on applicable and reasonable evaluation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets of this study can be available in Supplementary information.

References 

  • Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8), 1318–1324.

    Article  CAS  Google Scholar 

  • Andersson, M., Ottesen, R. T., & Langedal, M. (2010). Geochemistry of urban surface soils—Monitoring in Trondheim Norway. Geoderma, 156(3–4), 112–118.

    Article  CAS  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    Article  CAS  Google Scholar 

  • Cannon, W. F., & Horton, J. D. (2009). Soil geochemical signature of urbanization and industrialization–Chicago, Illinois, USA. Applied Geochemistry, 24(8), 1590–1601.

    Article  CAS  Google Scholar 

  • Chai, L., Wang, Y., Wang, X., Ma, L., Cheng, Z., & Su, L. (2021). Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou China. Ecological Indicators, 125, 107507.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, L., Hu, B., Xu, J., & Liu, X. (2022). Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere, 289, 133182.

    Article  CAS  Google Scholar 

  • Chen, L., Zhou, S., Shi, Y., Wang, C., Li, B., Li, Y., & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of the Total Environment, 615, 141–149.

    Article  CAS  Google Scholar 

  • Dala-Paula, B. M., Custódio, F. B., Knupp, E. A. N., Palmieri, H. E. L., Silva, J. B. B., & Glória, M. B. A. (2018). Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 242, 383–389.

    Article  CAS  Google Scholar 

  • Dash, S., Borah, S. S., & Kalamdhad, A. S. (2020). Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of Deepor Beel, Assam India. Ecological Indicators, 114, 106291.

    Article  CAS  Google Scholar 

  • Dey, P., Mahapatra, B. S., Juyal, V. K., Pramanick, B., Negi, M. S., Paul, J., & Singh, S. P. (2021). Flax processing waste–A low-cost, potential biosorbent for treatment of heavy metal, dye and organic matter contaminated industrial wastewater. Industrial Crops and Products, 174, 114195.

    Article  CAS  Google Scholar 

  • DOE (Department of Environment). (1997). Environmental quality standard for Bangladesh. Ministry of Environment and Forestry, Department of Environment, Dhaka, Bangladesh, pp. 212–214.

  • El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., et al. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 419, 126421.

    Article  CAS  Google Scholar 

  • Fei, X., Lou, Z., Xiao, R., Ren, Z., & Lv, X. (2020). Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Science of the Total Environment, 747, 141293.

    Article  CAS  Google Scholar 

  • Gao, L., Wang, Z., Zhu, A., Liang, Z., Chen, J., & Tang, C. (2019). Quantitative source identification and risk assessment of trace elements in soils from Leizhou Peninsula, South China. Human and Ecological Risk Assessment: An International Journal, 25(7), 1832–1852.

    Article  CAS  Google Scholar 

  • Gupta, N., Yadav, K. K., Kumar, V., Krishnan, S., Kumar, S., Nejad, Z. D., et al. (2021). Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environmental Toxicology and Pharmacology, 82, 103563.

    Article  CAS  Google Scholar 

  • Hu, Y., You, M., Liu, G., & Dong, Z. (2021). Characteristics and potential ecological risks of heavy metal pollution in surface soil around coal-fired power plant. Environmental Earth Sciences, 80(17), 1–10.

    Article  CAS  Google Scholar 

  • Huang, J., Wu, Y., Sun, J., Li, X., Geng, X., Zhao, M., et al. (2021). Health risk assessment of heavy metal (loid) s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. Journal of Hazardous Materials, 415, 125629.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., & Habibullah-Al-Mamun, M. (2015). Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment, 187(5), 288.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Masunaga, S. (2014). Trace metals in soil and vegetables and associated health risk assessment. Environmental Monitoring and Assessment, 186(12), 8727–8739.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Islam, S. M. A. (2019). Sources and ecological risks of heavy metals in soils under different land uses in Bangladesh. Pedosphere, 29(5), 665–675.

    Article  CAS  Google Scholar 

  • Jamal, A., Delavar, M. A., Naderi, A., Nourieh, N., Medi, B., & Mahvi, A. H. (2018). Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Human and Ecological Risk Assessment: An International Journal.

  • Jiang, B., Adebayo, A., Jia, J., Xing, Y., Deng, S., Guo, L., et al. (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195.

    Article  CAS  Google Scholar 

  • Kang, Z., Wang, S., Qin, J., Wu, R., & Li, H. (2020). Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province China. Scientific Reports, 10(1), 1–10.

    CAS  Google Scholar 

  • Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 9(1), 183–193.

    Article  CAS  Google Scholar 

  • Kapoor, R. T., Mfarrej, M. F. B., Alam, P., Rinklebe, J., & Ahmad, P. (2022). Accumulation of chromium in plants and its repercussion in animals and humans. Environmental Pollution, 119044.

  • Kashem, M. D. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, and Soil Pollution, 115(1–4), 347–361.

    Article  CAS  Google Scholar 

  • Keshavarzi, A., Kumar, V., Ertunç, G., & Brevik, E. C. (2021). Ecological risk assessment and source apportionment of heavy metals contamination: An appraisal based on the Tellus soil survey. Environmental Geochemistry and Health, 43(5), 2121–2142.

    Article  CAS  Google Scholar 

  • Kormoker, T., Proshad, R., Islam, S., Ahmed, S., Chandra, K., Uddin, M., & Rahman, M. (2019). Toxic metals in agricultural soils near the industrial areas of Bangladesh: Ecological and human health risk assessment. Toxin Reviews. https://doi.org/10.1080/15569543.2019.1650777

    Article  Google Scholar 

  • Kormoker, T., Proshad, R., Islam, M. S., Tusher, T. R., Uddin, M., Khadka, S., et al. (2022). Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. International Journal of Environmental Health Research, 32(1), 40–60.

    Article  CAS  Google Scholar 

  • Kormoker, T., Proshad, R., Islam, S., Ahmed, S., Chandra, K., Uddin, M., & Rahman, M. (2021). Toxic metals in agricultural soils near the industrial areas of Bangladesh: Ecological and human health risk assessment. Toxin Reviews, 40(4), 1135–1154.

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity–A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036.

    Article  CAS  Google Scholar 

  • Kumar, S., Rahman, M. A., Islam, M. R., Hashem, M. A., & Rahman, M. M. (2022). Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere, 290, 133288.

    Article  CAS  Google Scholar 

  • Kumar, V., Bhatti, S. S., & Nagpal, A. K. (2021). Assessment of metal (loid) contamination and genotoxic potential of agricultural soils. Archives of Environmental Contamination and Toxicology, 81(2), 272–284.

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., et al. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    Article  CAS  Google Scholar 

  • Kurucu, Y., & Chiristina, N. K. (2008). Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region Turkey. Environmental Monitoring and Assessment, 136(1), 289–297.

    CAS  Google Scholar 

  • Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045.

    Article  CAS  Google Scholar 

  • Li, M., Li, C., & Zhang, M. (2018). Exploring the spatial spillover effects of industrialization and urbanization factors on pollutants emissions in China’s Huang-Huai-Hai region. Journal of Cleaner Production, 195, 154–162.

    Article  CAS  Google Scholar 

  • Li, Y., Dong, Z., Feng, D., Zhang, X., Jia, Z., Fan, Q., & Liu, K. (2022). Study on the risk of soil heavy metal pollution in typical developed cities in eastern China. Scientific Reports, 12(1), 1–9.

    CAS  Google Scholar 

  • Li, Y., Chen, H., & Teng, Y. (2020). Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Science of the Total Environment, 737, 140310.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, Y. J., Liu, Y., Liu, Z., & Zhang, A. N. (2018). Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicology and Environmental Safety, 164, 261–269.

    Article  CAS  Google Scholar 

  • Liu, K., Li, C., Tang, S., Shang, G., Yu, F., & Li, Y. (2020). Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi China. Chemosphere, 251, 126415.

    Article  CAS  Google Scholar 

  • Mallick, S. R., Proshad, R., Islam, M. S., Sayeed, A., Uddin, M., Gao, J., & Zhang, D. (2019). Heavy metals toxicity of surface soils near industrial vicinity: A study on soil contamination in Bangladesh. Archives of Agriculture and Environmental Science, 4(4), 356–368. https://doi.org/10.26832/24566632.2019.040401

  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., et al. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850.

    Article  CAS  Google Scholar 

  • Memoli, V., Esposito, F., Panico, S. C., De Marco, A., Barile, R., & Maisto, G. (2019). Evaluation of tourism impact on soil metal accumulation through single and integrated indices. Science of the Total Environment, 682, 685–691.

    Article  CAS  Google Scholar 

  • Men, C., Liu, R., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2019). Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Science of the Total Environment, 652, 27–39.

    Article  CAS  Google Scholar 

  • Mishra, S., & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C, 34(1), 1–32.

    Article  CAS  Google Scholar 

  • Mridha, D., Ray, I., Sarkar, J., De, A., Joardar, M., Das, A., et al. (2022). Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study. Environmental Pollution, 293, 118561.

  • Nádudvari, Á., Kozielska, B., Abramowicz, A., Fabiańska, M., Ciesielczuk, J., Cabała, J., & Krzykawski, T. (2021). Heavy metal-and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). Journal of Hazardous Materials, 412, 125244.

    Article  CAS  Google Scholar 

  • Olumayowa Oluwasola, H., Oluoye, O., Mohammad Bashir, S., Odewole, O. A., Onyeka Abugu, H., Akpomie, K. G., et al. (2021). Geochemical and health risk assessment of heavy metals concentration in soils around Oke-Ere mining area in Kogi State, Nigeria. International Journal of Environmental Analytical Chemistry, 1–16.

  • Parker, G. H., Gillie, C. E., Miller, J. V., Badger, D. E., & Kreider, M. L. (2022). Human health risk assessment of arsenic, cadmium, lead, and mercury ingestion from baby foods. Toxicology Reports, 9, 238–249.

    Article  CAS  Google Scholar 

  • Proshad, R., Islam, M. S., Kormoker, T., Sayeed, A., Khadka, S., & Idris, A. M. (2021). Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Science of the Total Environment, 789, 147962.

    Article  CAS  Google Scholar 

  • Proshad, R., Kormoker, T., Islam, M. S., Hanif, M. A., & Chandra, K. (2018). Chronic exposure assessment of toxic elements from agricultural soils around the industrial areas of Tangail district, Bangladesh. Arch Agric Environ Sci, 3, 317–336.

    Article  Google Scholar 

  • Qiao, P., Dong, N., Yang, S., & Gou, Y. (2021). Quantitative analysis of the main sources of pollutants in the soils around key areas based on the positive matrix factorization method. Environmental Pollution, 273, 116518.

    Article  CAS  Google Scholar 

  • Rahmanian, M., & Safari, Y. (2020). Contamination factor and pollution load index to estimate source apportionment of selected heavy metals in soils around a cement factory, SW Iran. Archives of Agronomy and Soil Science, 1–11.

  • Raju, N. J. (2022). Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research, 203, 111782.

    Article  CAS  Google Scholar 

  • Shahid, M., Khalid, S., & Saleem, M. (2022). Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environmental Geochemistry and Health, 44(2), 487–496.

    Article  CAS  Google Scholar 

  • Sun, L., Guo, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., & Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA, 175, 101–109.

    Article  CAS  Google Scholar 

  • Tusher, T. R., Piash, A. S., Latif, M. A., Kabir, M. H., & Rana, M. M. (2017). Soil quality and heavy metal concentrations in agricultural lands around dyeing, glass and textile industries in Tangail district of Bangladesh. Journal of Environmental Science and Natural Resources, 10(2), 109–116.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2003). Diesel engine exhaust; CASRN N.A. U.S. Environmental Protection Agency, Ofce of Research and Development, National Center for Environmental Assessment, Integrated Risk Information System (IRIS), Chemical Assessment Summary.

  • United States Environmental Protection Agency (USEPA). (2009). Risk assessment guidance for superfund – Volume1: human health evaluation manual – Part F, supplemental guidance for inhalation risk assessment. U.S. Environmental Protection Agency, Ofce of Superfund Remediation and Technology, EPA-540-R-070–002.

  • United States Environmental Protection Agency (USEPA). (2011). Exposure factors handbook: 2011 Edition. Washington, DC: National Center for Environmental Assessment, Office of Research and Development, EPA/600/R-09/052F.

  • United States Environmental Protection Agency (USEPA). (2020, November). Regional screening levels (RSLs) – User’s guide. Retrieved December 21, 2021, from https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide.

  • Wang, Y., Guo, G., Zhang, D., & Lei, M. (2021). An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis. Environmental Pollution, 276, 116666.

    Article  CAS  Google Scholar 

  • Wu, J., Li, J., Teng, Y., Chen, H., & Wang, Y. (2020). A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. Journal of Hazardous Materials, 388, 121766.

    Article  CAS  Google Scholar 

  • Xiao, W., Ye, X., Zhu, Z., Zhang, Q., Zhao, S., Chen, D., et al. (2021). Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Ecotoxicology and Environmental Safety, 208, 111506.

    Article  CAS  Google Scholar 

  • Zakir, H. M., Quadir, Q. F., & Mollah, M. Z. I. (2021). Human health risk assessment of heavy metals through the consumption of common foodstuffs collected from two divisional cities of Bangladesh. Exposure and Health, 13(2), 253–268.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    Article  CAS  Google Scholar 

  • Zhang, H., Yin, A., Yang, X., Fan, M., Shao, S., Wu, J., et al. (2021). Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecological Indicators, 122, 107233.

    Article  CAS  Google Scholar 

  • Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicology and Environmental Safety, 159, 354–362.

    Article  CAS  Google Scholar 

  • Zhaoyong, Z., Xiaodong, Y., Simay, Z., & Mohammed, A. (2018). Health risk evaluation of heavy metals in green land soils from urban parks in Urumqi, northwest China. Environmental Science and Pollution Research, 25(5), 4459–4473.

    Article  CAS  Google Scholar 

  • Zheng, S., Wang, Q., Yuan, Y., & Sun, W. (2020). Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 316, 126213.

    Article  CAS  Google Scholar 

  • Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., et al. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, 662, 414–421.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all of the research collaborators for their valuable suggestions and help in soil sample collection.

Funding

The authors express their gratitude to Research Center of Advanced Materials, King Khalid University, Saudi Arabia, for support (award number KKU/RCAMS/22).

Author information

Authors and Affiliations

Authors

Contributions

Ram Proshad collected soil samples, designed the experiment, analyzed the data, and wrote the total manuscript, whereas Maksudul Islam and Abubakr Mustafa Idris revised and improved the whole manuscript.

Corresponding author

Correspondence to Ram Proshad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 895 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proshad, R., Islam, M. & Idris, A.M. Uncertainty Analysis in Receptor Model with Sources Identification and Risks Apportionment of Toxic Metal(oid)s in Agricultural Soils Around Industrial Areas in Bangladesh. Water Air Soil Pollut 233, 335 (2022). https://doi.org/10.1007/s11270-022-05780-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05780-w

Keywords

Navigation